Gotowa bibliografia na temat „FLOW MACHINING PROCESS”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „FLOW MACHINING PROCESS”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "FLOW MACHINING PROCESS"
Brar, B. S., R. S. Walia i V. P. Singh. "Electrochemical-aided abrasive flow machining (ECA2FM) process: a hybrid machining process". International Journal of Advanced Manufacturing Technology 79, nr 1-4 (4.02.2015): 329–42. http://dx.doi.org/10.1007/s00170-015-6806-y.
Pełny tekst źródłaSingh, Sehijpal, i H. S. Shan. "Development of magneto abrasive flow machining process". International Journal of Machine Tools and Manufacture 42, nr 8 (czerwiec 2002): 953–59. http://dx.doi.org/10.1016/s0890-6955(02)00021-4.
Pełny tekst źródłaSchmitt, J., i S. Diebels. "Simulation of the abrasive flow machining process". ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 93, nr 2-3 (1.02.2013): 147–53. http://dx.doi.org/10.1002/zamm.201200111.
Pełny tekst źródłaGupta, Ravi, Rahul O. Vaishya, Dr R. S. Walia Dr. R.S Walia i Dr P. K. Kalra Dr. P.K Kalra. "Experimental Study of Process Parameters On Material Removal Mechanism in Hybrid Abrasive Flow Machining Process (AFM)". International Journal of Scientific Research 2, nr 6 (1.06.2012): 234–37. http://dx.doi.org/10.15373/22778179/june2013/75.
Pełny tekst źródłaMa, Bao Li, Shi Ming Ji i Da Peng Tan. "Soft Abrasive Flow Machining". Applied Mechanics and Materials 159 (marzec 2012): 262–66. http://dx.doi.org/10.4028/www.scientific.net/amm.159.262.
Pełny tekst źródłaKassim, Noordiana, Yusri Yusof, Mahmod Abd Hakim Mohamad, Mohd Najib Janon i Rafizah Mohd Hanifa. "Development of STEP-NC Based Machining System for Machining Process Information Flow". Applied Mechanics and Materials 315 (kwiecień 2013): 278–82. http://dx.doi.org/10.4028/www.scientific.net/amm.315.278.
Pełny tekst źródłaMahdy, M., M. awad, F. Mansour i Ebrahim M. elshimy. "Magnetic field effect on Abrasive Flow Machining Process". Engineering Research Journal - Faculty of Engineering (Shoubra) 46, nr 1 (1.10.2020): 27–32. http://dx.doi.org/10.21608/erjsh.2020.228174.
Pełny tekst źródłaVu, Viet, Yan Beygelzimer, Roman Kulagin i Laszlo Toth. "Mechanical Modelling of the Plastic Flow Machining Process". Materials 11, nr 7 (16.07.2018): 1218. http://dx.doi.org/10.3390/ma11071218.
Pełny tekst źródłaUhlmann, E., C. Schmiedel i J. Wendler. "CFD Simulation of the Abrasive Flow Machining Process". Procedia CIRP 31 (2015): 209–14. http://dx.doi.org/10.1016/j.procir.2015.03.091.
Pełny tekst źródłaChen, Guang Jun, Xian Li Liu i Cai Xu Yue. "Study on Causes of Material Plastic Side Flow in Precision Hard Cutting Process". Advanced Materials Research 97-101 (marzec 2010): 1875–78. http://dx.doi.org/10.4028/www.scientific.net/amr.97-101.1875.
Pełny tekst źródłaRozprawy doktorskie na temat "FLOW MACHINING PROCESS"
DHULL, SACHIN. "INVESTIGATION OF HYBRID ELECTROCHEMICAL AND MAGNETIC FIELD ASSISTED ABRASIVE FLOW FINISHING PROCESS". Thesis, DELHI TECHNOLOGICAL UNIVERSITY, 2021. http://dspace.dtu.ac.in:8080/jspui/handle/repository/18780.
Pełny tekst źródłaDevotta, Ashwin Moris. "Characterization & modeling of chip flow angle & morphology in 2D & 3D turning process". Licentiate thesis, Högskolan Väst, Forskningsmiljön produktionsteknik(PTW), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:hv:diva-8671.
Pełny tekst źródłaHoward, Mitchell James. "Development of a machine-tooling-process integrated approach for abrasive flow machining (AFM) of difficult-to-machine materials with application to oil and gas exploration componenets". Thesis, Brunel University, 2014. http://bura.brunel.ac.uk/handle/2438/9262.
Pełny tekst źródłaNatale, Lorenzo. "Optimization of liquid flow rate distribution in etching modules through numerical simulationsand experiments". Thesis, KTH, Skolan för kemivetenskap (CHE), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-212556.
Pełny tekst źródłaMoreira, Pâmela Portela. "Ajuste da viscosidade do fluido erosivo para manutenção da eficiência do processo de usinagem por hidroerosão". Universidade Tecnológica Federal do Paraná, 2015. http://repositorio.utfpr.edu.br/jspui/handle/1/1308.
Pełny tekst źródłaHydroerosive grinding process is used on nozzle injectors for diesel system in order to improve its performance by rounding the internal diameter of the injection channels through which flows the diesel for injection in the engine. The efficiency of hydroerosive grinding process is related to the conditions of the erosive fluid used in the process, for which viscosity has a major role for efficiency maintenance. Coupling between particles and fluid is affected by viscosity decrease along time, thus influencing material removal rate efficiency and causing productivity losses, once cycle time increases to achieve the specified material removal rate. In the present investigation, the process efficiency was evaluated during 160 hours using viscosity correction of the erosive fluid in order to keep viscosity close to its initial work condition. The root cause for viscosity decrease was also investigated through evaluation of possible contamination of the erosive media by lower viscosity fluids existing in the process. After 160 hours of process monitoring with viscosity adjustment, it was observed 8,8 % of viscosity reduction considering the first and the last samples, besides that the material removal rate efficiency decreased only 4,2 % over 20 % decrease observed in a previous study related to hydroerosive grinding process without particle replacement and viscosity adjustment. Contamination of the erosive fluid by measurement oil used in the previous station was responsible for 37,5 % of viscosity decrease along 40 hours of production.
Веремей, Г. О. "Підвищення ефективності процесу відновлення сідел клапанів в авторемонтному виробництві". Thesis, Чернігів, 2015. http://ir.stu.cn.ua/123456789/15624.
Pełny tekst źródłaВ диссертационной работе решена актуальная задача повышения эффективности процесса восстановления сёдел клапанов в авторемонтном производстве за счёт увеличения точности и снижения трудоёмкости обработки путём разработки нового технологического оборудования, а также применения более совершенного режущего инструмента и материала. На основе созданных математических моделей установлены теоретические зависимости показателей качества формообразования при растачивании трех внутренних конических поверхностей профильным ориентированным инструментом от режимов обработки и предложен эффективный метод при решении задачи дефектации сёдел клапанов. Посредством проведённых экспериментальных исследований на базе разработанного авторемонтного оборудования и применения современного режущего материала сделаны практические рекомендации по повышению точности формообразования и снижению трудовых затрат в восстановительном ремонте сёдел клапанов газораспределительного механизма двигателя внутреннего сгорания
У дисертаційній роботі вирішена актуальна задача підвищення ефективності процесу відновлення сідел клапанів в авторемонтному виробництві за рахунок збільшення точності і зниження трудомісткості обробки шляхом розробки нового технологічного обладнання, а також застосування більш сучасного різального інструменту і матеріалу. На основі створених математичних моделей встановлені теоретичні залежності показників якості формоутворення при розточуванні трьох внутрішніх конічних поверхонь профільним орієнтованим інструментом від режимів обробки та запропоновано ефективний метод при вирішенні задачі дефектації сідел клапанів. За допомогою проведених експериментальних досліджень на базі розробленого авторемонтного обладнання та застосування сучасного різального матеріалу зроблені практичні рекомендації щодо підвищення точності формоутворення і зниження трудових витрат у відновлювальному ремонті сідел клапанів газорозподільного механізму двигуна внутрішнього згоряння
In the dissertation work the current problem of the efficiency increasing for the valve seats’ overhauled process in auto repairing production was solved. It has been implemented due to increase and labor intensity reduce of working by the development of new technological equipment, as well as better use of the cutting tool and its material. A method of forming surfaces for the valve seat while simultaneous by copied boring of the three conical surfaces with oriented tool was proposed, the usage of which can significantly reduce the complexity of the overhauled process, eliminate manual operations of lapping and improve surface quality. The overhauled equipment based on pneumatic bag was designed and manufactured. It improves the accuracy of the valve seats processing due to the introduction of the original design and technological solutions. The designed equipment was introduced in the current auto repairing production and educational process of the university. The assessment method for the worn surfaces state of the valve seat in the problem of flaw detection was proposed, which allowed to improve the accuracy and eliminate the error of the overhauled process. The general and partial modular 3D models of: the forming process, the flaw detection problem, describe the geometry of surfaces with complicated - variable topography, optimization of processing parameters was designed. The analytical and experimental dependences for the processing parameters on the surface quality rates were obtained. On their basis was made the practical advice on choosing the optimum cutting conditions when overhauling valve seats. The results for precise increasing of the overhauled valve seats’ process, tested on the engine with the diagnostic equipment, allowed to reach improve of the experimental engine performance.
ALI, PARVESH. "INVESTIGATIONS OF HYBRID THERMAL ABRASIVE FLOW MACHINING PROCESS". Thesis, 2019. http://dspace.dtu.ac.in:8080/jspui/handle/repository/16943.
Pełny tekst źródłaNayak, Swadesh Kumar. "CFD Analysis of Flow Pattern in Electrochemical Machining Process". Thesis, 2015. http://ethesis.nitrkl.ac.in/7579/1/185_(1).pdf.
Pełny tekst źródłaDash, Rupalika. "Modeling and CFD Simulation of Abrasive Flow Machining Process". Thesis, 2015. http://ethesis.nitrkl.ac.in/7861/1/2015_MTR_RupalikaDas_613ME3007.pdf.
Pełny tekst źródłaHung, Jung-Chao, i 洪榮昭. "Five-axis Machining Process Planning Research for Axial-flow Compressor Impeller". Thesis, 2006. http://ndltd.ncl.edu.tw/handle/6jm87e.
Pełny tekst źródła國立臺北科技大學
製造科技研究所
94
Five-axis numerically controlled machining has more recently been applied in national defence and motor vehicle industries to produce precisely complex surface parts, such as aerospace parts, impeller blades, dies and moulds. For promoting the application of five-axis machining technology, this research presents a milling process plan for machining the impeller blades was provided. The impeller of the axial-flow compressor contains a lot of thin blades on the hub of the impeller. In addition, the thin blades of the impeller possess overlapped surfaces and with large blade height/thickness ratio (about 20:1), so that the machining of the impeller is not easy. At the present time, the impeller machining usually adopts five-axis numerically controlled machines because of the tool motion has two additional degrees of freedom compared with traditional three-axis machining. In this paper, a new milling process method for thin blade with twisted ruled surfaces has presented. Our strategy is to change the tool orientation such that the overcut or undercut is minimized. Unigraphics CAD/CAM system, Procam system, and Vericut system were used to model the geometry of the impeller and to simulate and verify the cutting process in five-axis machine (X, Y, Z, A, and B axes). The validity and effectiveness of the blade milling process was demonstrated on Forestline five-axis machine with Num 1060M controller.
Części książek na temat "FLOW MACHINING PROCESS"
Uhlmann, E., V. Mihotovic, H. Szulczynski i M. Kretzschmar. "Developing a Process Model for Abrasive Flow Machining". W Burrs - Analysis, Control and Removal, 73–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00568-8_8.
Pełny tekst źródłaFletcher, A. J., J. B. Hull, J. Mackie i S. A. Trengove. "Computer Modelling of the Abrasive Flow Machining Process". W Surface Engineering, 592–601. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0773-7_59.
Pełny tekst źródłaJindal, Anil, Sushil Mittal i Parlad Kumar. "The Magnetically Assisted Abrasive Flow Machining Process: Review". W Lecture Notes in Mechanical Engineering, 229–39. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0909-1_23.
Pełny tekst źródłaPrasad, P. S. S. R. K., Navneet Verma, Narendra Kumar i K. M. Rajan. "Study and Establishment of Manufacturing Process of Molybdenum Liners Using Warm Flow Forming Process". W Advances in Forming, Machining and Automation, 105–16. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9417-2_8.
Pełny tekst źródłaKainrath, Martin, Mohamed Aburaia, Kemajl Stuja, Maximilian Lackner i Erich Markl. "Accuracy Improvement and Process Flow Adaption for Robot Machining". W Lecture Notes in Mechanical Engineering, 189–200. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-62784-3_16.
Pełny tekst źródłaDhull, Sachin, Qasim Murtaza, R. S. Walia, M. S. Niranjan i Saloni Vats. "Abrasive Flow Machining Process Hybridization with Other Non-Traditional Machining Processes: A Review". W Proceedings of International Conference in Mechanical and Energy Technology, 101–9. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2647-3_10.
Pełny tekst źródłaKumar, Sudhanshu, Dharmendra Kumar i Dilip Sen. "Study of Gap Flow Simulation for Machining Gap in Electric Discharge Machining process—A Review". W Lecture Notes in Mechanical Engineering, 223–30. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-2921-4_21.
Pełny tekst źródłaBhardwaj, Anant, Parvesh Ali, R. S. Walia, Qasim Murtaza i S. M. Pandey. "Development of Hybrid Forms of Abrasive Flow Machining Process: A Review". W Lecture Notes in Mechanical Engineering, 41–67. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6412-9_5.
Pełny tekst źródłaSharma, Sahil, Tarlochan Singh i Akshay Dvivedi. "Post-Processing of Additive Manufactured Components Through Abrasive Flow Machining Process". W Handbook of Post-Processing in Additive Manufacturing, 169–80. New York: CRC Press, 2023. http://dx.doi.org/10.1201/9781003276111-9.
Pełny tekst źródłaLiu, Hui, Markus Meurer i Thomas Bergs. "Three-Dimensional Modeling of Thermomechanical Tool Loads During Milling Using the Coupled Eulerian-Lagrangian Formulation". W Lecture Notes in Production Engineering, 318–30. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-34486-2_23.
Pełny tekst źródłaStreszczenia konferencji na temat "FLOW MACHINING PROCESS"
Han, Zhao, i Fan Qingming. "Design and Simulation Analysis of Flow Field in Turbine Blades ECM Process". W Proceedings of the 2019 International Conference on Precision Machining, Non-Traditional Machining and Intelligent Manufacturing (PNTIM 2019). Paris, France: Atlantis Press, 2019. http://dx.doi.org/10.2991/pntim-19.2019.13.
Pełny tekst źródłaTsuboi, Ryo, i Makoto Yamamoto. "Modeling and Applications of Electrochemical Machining Process". W ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-12552.
Pełny tekst źródłaYang, Z. Y., i Y. H. Chen. "Process Planning in Layer-Based Machining". W ASME 2001 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/detc2001/dfm-21165.
Pełny tekst źródłaPerry, Winfield B., i John Stackhouse. "Gas Turbine Applications of Abrasive Flow Machining". W ASME 1989 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1989. http://dx.doi.org/10.1115/89-gt-165.
Pełny tekst źródłaMatsumura, Takashi, i Yuji Musha. "Cutting Process Simulation in Micro Dimple Machining". W ASME 2019 14th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/msec2019-2954.
Pełny tekst źródłaHsu, Fu-Chuan, Tsung-Pin Hung, Yunn-Shiuan Liao, Shih-Ming Wang, Ming-Chyuan Lu, Ying-Cheng Lu i Ho-Chung Fu. "Post-Treatment Process of Additive Manufacturing for Intramedullary Nails by Ultrasonic Vibration Machining, Abrasive Flow Machining, and Electropolishing Technology". W 4M/IWMF2016 The Global Conference on Micro Manufacture : Incorporating the 11th International Conference on Multi-Material Micro Manufacture (4M) and the 10th International Workshop on Microfactories (IWMF). Singapore: Research Publishing Services, 2016. http://dx.doi.org/10.3850/978-981-11-0749-8_711.
Pełny tekst źródłaBrar, B. S., R. S. Walia, V. P. Singh i P. Singh. "Effects of Helical Rod Profiles in Helical Abrasive Flow Machining (HLX-AFM) Process". W ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-53711.
Pełny tekst źródłaTsuboi, Ryo, Kazuyuki Toda, Makoto Yamamoto, Ryuki Nohara i Dai Kato. "Modelling of Three-Phase Flow in Electro-Chemical Machining". W ASME 2005 Fluids Engineering Division Summer Meeting. ASMEDC, 2005. http://dx.doi.org/10.1115/fedsm2005-77435.
Pełny tekst źródłaYeung, Ho, Yang Guo, James B. Mann, W. Dale Compton i Srinivasan Chandrasekar. "A Comparative Study of Energy and Material Flow in Modulation-Assisted Machining and Conventional Machining". W ASME 2014 International Manufacturing Science and Engineering Conference collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/msec2014-4040.
Pełny tekst źródłaLortz, Wolfgang, i Radu Pavel. "Fundamental Process Mechanics Common to Machining and Grinding Operations". W ASME 2020 15th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/msec2020-8371.
Pełny tekst źródła