Gotowa bibliografia na temat „Flow-induced crystallization”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Flow-induced crystallization”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Flow-induced crystallization"
Derakhshandeh, Maziar, Bashar Jazrawi, George Hatzikiriakos, Antonios K. Doufas i Savvas G. Hatzikiriakos. "Flow-induced crystallization of polypropylenes in capillary flow". Rheologica Acta 54, nr 3 (19.12.2014): 207–21. http://dx.doi.org/10.1007/s00397-014-0829-4.
Pełny tekst źródłaFortelný, Ivan, Jana Kovářová i Josef Kovář. "Flow-Induced Crystallization of High-Density Polyethylene". Collection of Czechoslovak Chemical Communications 60, nr 10 (1995): 1733–40. http://dx.doi.org/10.1135/cccc19951733.
Pełny tekst źródłaSwartjes, F. H. M., G. W. M. Peters, S. Rastogi i H. E. H. Meijer. "Stress Induced Crystallization in Elongational Flow". International Polymer Processing 18, nr 1 (marzec 2003): 53–66. http://dx.doi.org/10.3139/217.1719.
Pełny tekst źródłaMassaro, R., P. Roozemond, M. D'Haese i P. Van Puyvelde. "Flow-Induced Crystallization of Polyamide-6". International Polymer Processing 33, nr 3 (29.07.2018): 327–35. http://dx.doi.org/10.3139/217.3524.
Pełny tekst źródłaCoppola, Salvatore, Nino Grizzuti i Pier Luca Maffettone. "Microrheological Modeling of Flow-Induced Crystallization". Macromolecules 34, nr 14 (lipiec 2001): 5030–36. http://dx.doi.org/10.1021/ma010275e.
Pełny tekst źródłaNazari, Behzad, Alicyn M. Rhoades, Richard P. Schaake i Ralph H. Colby. "Flow-Induced Crystallization of PEEK: Isothermal Crystallization Kinetics and Lifetime of Flow-Induced Precursors during Isothermal Annealing". ACS Macro Letters 5, nr 7 (30.06.2016): 849–53. http://dx.doi.org/10.1021/acsmacrolett.6b00326.
Pełny tekst źródłaCascone, Annarita, i René Fulchiron. "Squeeze flow induced crystallization monitoring in polymers". Polymer Testing 30, nr 7 (październik 2011): 760–64. http://dx.doi.org/10.1016/j.polymertesting.2011.06.012.
Pełny tekst źródłaMcHugh, A. J., i A. K. Doufas. "Modeling flow-induced crystallization in fiber spinning". Composites Part A: Applied Science and Manufacturing 32, nr 8 (sierpień 2001): 1059–66. http://dx.doi.org/10.1016/s1359-835x(00)00170-6.
Pełny tekst źródłaDairanieh, I. S., A. J. Mchugh i A. K. Doufas. "A Phenomenological Model for Flow-Induced Crystallization". Journal of Reinforced Plastics and Composites 18, nr 5 (marzec 1999): 464–71. http://dx.doi.org/10.1177/073168449901800506.
Pełny tekst źródłaLamberti, Gaetano. "ChemInform Abstract: Flow Induced Crystallization of Polymers". ChemInform 45, nr 21 (8.05.2014): no. http://dx.doi.org/10.1002/chin.201421287.
Pełny tekst źródłaRozprawy doktorskie na temat "Flow-induced crystallization"
Thurman, Derek Wade Bercaw John E. "Molecular aspects of flow-induced crystallization of polypropylene /". Diss., Pasadena, Calif. : Caltech, 2006. http://resolver.caltech.edu/CaltechETD:etd-12032005-115154.
Pełny tekst źródłaJalali, Amirjalal. "Quiescent and flow-induced crystallization of poly(lactic acid)". Thèse, Université de Sherbrooke, 2017. http://hdl.handle.net/11143/9892.
Pełny tekst źródłaAbstract : Poly(lactic acid), PLA, is a biocompatible and biodegradable polymer that can be produced from renewable resources. As a result, it has raised particular attention as a potential replacement for petroleum-based polymers. It is an aliphatic polyester with properties such as high modulus, high strength, and biocompatibility and is thus a promising material for various applications such as implants, drug encapsulation, and packaging. In the wake of low glass transition temperature, PLA has a low heat resistance and its application is limited to those not associated with high temperatures. In addition, this polymer suffers from a low degree of crystalinity. Increasing the crystallization rate in many processing operations, such as injection molding, is required. So far, many routes have been found to improve the crystallinity of PLA. These methods include using nucleating agents, plasticizers, and combination of nucleating agents and plasticizers together. PLA crystallization in the melt state results in two slightly different crystalline forms known as α and α’forms. This thesis compares the self-nucleation ability of these two crystal forms by self-nucleation. This is achieved by comparing crystallization temperatures upon cooling for samples previously crystallized at various temperatures and then re-heated to a temperature in the partial melting range for PLA. In the second step, we study the effect of molecular weight of PLA on the nucleation efficiency of PLA crystalline phases. This part of the investigation opens a new pathway to understand the role of PLA crystalline phases on the optimal condition for its crystallization kinetics. Polymer processing operations involve mixed shear and elongational flows and cause polymer molecules to experience flow-induced crystallization during flow and subsequent solidification. The mechanical properties of the final products are significantly dependent upon the degree of crystallization and types of formed crystals. Therefore, optimization of any polymer process requires a good understanding of how flow influences crystallization. The type of flow can play a significant role in affecting crystallization. For example, elongational flow causes molecules to orient and stretch in the direction of extension, as in the case of fiber spinning and film blowing, helping the process of flow-induced crystallization. An extensive body of literature exists on flow-induced crystallization of conventional thermoplastics. Having said that, less attention has been paid to the effect of shear and elongational flow on the PLA crystallization kinetics. As investigated in the final part of this thesis, the effect of iv molecular weight on the shear-induced crystallization of PLA is reported. For this, low, medium and high molecular-weight PLAs were prepared from a high molecular weight one by a hydrolysis reaction. Next, by means of a simple rotational rheometry, effect of the shear flow was examined on the crystallization kinetics of these three PLAs.
Hadinata, Chitiur, i chitiurh@yahoo com au. "Flow-induced crystallization of polybutene-1 and effect of molecular parameters". RMIT University. Civil, Environmental and Chemical Engineering, 2007. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20080212.163803.
Pełny tekst źródłaKannan, Krishna. "A thermodynamical framework for the solidification of molten polymers and its application to fiber extrusion". Texas A&M University, 2004. http://hdl.handle.net/1969.1/3065.
Pełny tekst źródłaFernandez-Ballester, Lucia Kornfield Julia A. Kornfield Julia A. "Formation of oriented precursors in flow-induced polymer crystallization : experimental methods and model materials /". Diss., Pasadena, Calif. : California Institute of Technology, 2007. http://resolver.caltech.edu/CaltechETD:etd-05082007-152644.
Pełny tekst źródłaMurase, Hiroki. "Flow-induced phase separation and crystallization in semidilute solutions of ultrahigh molecular weight polyethylene". 京都大学 (Kyoto University), 2005. http://hdl.handle.net/2433/144863.
Pełny tekst źródłaĐjurdjević, Predrag (Predrag Dragutin). "Molecular dynamics modeling of orientation-induced nucleation in short alkanes : toward molecular modeling of flow-induced crystallization in polymers". Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/79557.
Pełny tekst źródłaTitle as it appears in MIT degrees awarded booklet, September 2012: Molecular simulation of primary nucleation and growth from oriented melts in polyethylene. Cataloged from PDF version of thesis.
Includes bibliographical references (p. 59-63).
The enhancement of the primary flow-induced nucleation rate in short chain alkanes (C20 and C150) has been examined for different levels of orientation by atomistic molecular dynamics simulations. The nucleation rate has been found to change drastically by varying average molecular orientation and temperature. For example, it is possible to accelerate nucleation kinetics by three orders of magnitude at the same temperature, but varying the average level of orientation (P2 (cos [Theta])) . The size of the critical nucleus has been found to increase with the level of undercooling Tm - T decrease, consistent with the classical nucleation theory. Our atomnistic molecular dynamics simulation model is even tractable at the small levels of undercooling, thus clearly demonstrating the effects of orientation (melt anisotropy) on nucleation kinetics when thermal nucleation is expected to be negligible. Furthermore, we calculate the influence of melt anisotropy on the growth rate. As expected, the growth rate is also altered by melt anisotropy. Furthermore, the growth rate maximum always occurs at the temperature above the nucleation kinetics maximum.
by Predrag Đjurdjević.
S.M.
Derakhshandeh, Maziar. "Flow-induced crystallization of high-density polyethylene : the effects of shear, uniaxial extension and temperature". Thesis, University of British Columbia, 2011. http://hdl.handle.net/2429/37669.
Pełny tekst źródłaSzántó, Levente [Verfasser], Christian [Akademischer Betreuer] Friedrich i Rolf [Akademischer Betreuer] Mülhaupt. "Ultra-broad molecular weight distributed multimodal blends of linear polyethylene: its linear and nonlinear viscoelastic properties and flow-induced crystallization ability". Freiburg : Universität, 2019. http://d-nb.info/1224416511/34.
Pełny tekst źródłaNebouy, Matthias. "Nanostructuration, reinforcement in the rubbery state and flow properties at high shear strain of thermoplastic elastomers : Experiments and modeling". Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEI135.
Pełny tekst źródłaThermoplastic elastomers, made of segmented block copolymers forming phase-separated domains (hard/soft) are widely used in the industry for various applications (car dashboards, cable sheathing or even bitumen modifiers). However, the empirical approach often used consisting in modifying the chain composition and looking at the consequences on the final properties lacks of understanding and the structure-properties relationships remain elusive nowadays. The main objective of this thesis is to bring new insights on the following points. What are the effects of the chain architecture and processing conditions on the crystallization kinetics and resulting morphology? Can we explain the reinforcement effect in these materials from the knowledge of their particular structure? How does the flow-induced crystallization influence the rheological properties? To answer these questions, we propose to combine an experimental study, based on structural and rheological characterizations of multiblock copolymers (polybutylene terephthalate – polytetrahydrofuran), with a numerical approach consisting in the development of a coarse-grained model for molecular dynamic simulations. This work led to the following main results. First, it was shown that the multiphasic structure, resulting from a bimodal crystallization whose kinetics is essentially controlled by the soft segment’s length, highly depends on the processing conditions, leading to more ordered structures when the chain mobility is higher. Then, the topological analysis of the semicrystalline network enabled to identify two key parameters to predict the evolution of the plateau modulus: volume fraction and width of the crystallites. Finally, the evolution of the flow properties under flow-induced crystallization was described thanks to the elaboration of a rheological model based on the slowdown of the chains dynamics
Książki na temat "Flow-induced crystallization"
Zuidema, Hans. Flow induced crystallization of polymers. Eindhoven: University of Eindhoven, 2000.
Znajdź pełny tekst źródła(Editor), Gaetano Guerra, Giuseppe Titomanlio (Editor), I. Meisel (Editor), K. Grieve (Editor), C. S. Kniep (Series Editor) i S. Spiegel (Series Editor), red. Flow-Induced Crystallization of Polymers (Macromolecular Symposia). Wiley-VCH, 2002.
Znajdź pełny tekst źródłaGiuseppe, Titomanlio, i Guerra Gaetano, red. Invited lectures and selected contributions from the conference Flow-induced Crystallization of Polymers: Impact on processing and manufacturing properties : held in Salerno, Italy, 15th-17th October 2001. Weinheim, Germany: WILEY-VCH, 2002.
Znajdź pełny tekst źródłaCzęści książek na temat "Flow-induced crystallization"
Peters, Gerrit W. M., Luigi Balzano i Rudi J. A. Steenbakkers. "Flow-Induced Crystallization". W Handbook of Polymer Crystallization, 399–432. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118541838.ch14.
Pełny tekst źródłaRoozemond, Peter C., Martin van Drongelen i Gerrit W. M. Peters. "Modeling Flow-Induced Crystallization". W Polymer Crystallization II, 243–94. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/12_2016_351.
Pełny tekst źródłaJaneschitz-Kriegl, Hermann. "Flow Induced Processes Causing Oriented Crystallization". W Crystallization Modalities in Polymer Melt Processing, 111–99. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-77317-9_3.
Pełny tekst źródłaJaneschitz-Kriegl, Hermann. "Flow Induced Processes Causing Oriented Crystallization". W Crystallization Modalities in Polymer Melt Processing, 107–93. Vienna: Springer Vienna, 2009. http://dx.doi.org/10.1007/978-3-211-87627-5_3.
Pełny tekst źródłaRhoades, Alicyn, i Roberto Pantani. "Poly(Lactic Acid): Flow-Induced Crystallization". W Thermal Properties of Bio-based Polymers, 87–117. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/12_2019_49.
Pełny tekst źródłaPeters, Gerrit W. M. "A Computational Model for Processing of Semicrystalline Polymers: The Effects of Flow-Induced Crystallization". W Polymer Crystallization, 312–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-45851-4_17.
Pełny tekst źródłaMcHugh, A. J. "Kinetics and Mechanisms of Flow-Induced Crystallization". W Integration of Fundamental Polymer Science and Technology—2, 371–80. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-1361-5_53.
Pełny tekst źródłavan Meerveld, Jan, i Markus Hütter. "About the Proper Choice of Variables to Describe Flow-Induced Crystallization in Polymer Melts". W IUTAM Symposium on Physicochemical and Electromechanical Interactions in Porous Media, 315–20. Dordrecht: Springer Netherlands, 2005. http://dx.doi.org/10.1007/1-4020-3865-8_36.
Pełny tekst źródłaMcHUGH, A. J., i R. K. GUY. "FLOW - INDUCED CRYSTALLIZATION IN POLYMER MELTS". W Theoretical and Applied Rheology, 425. Elsevier, 1992. http://dx.doi.org/10.1016/b978-0-444-89007-8.50177-5.
Pełny tekst źródłaZuidema, H., G. W. M. Peters i H. E. H. Meijer. "Polymer Injection Molding: Flow-induced Crystallization". W Encyclopedia of Materials: Science and Technology, 7364–69. Elsevier, 2001. http://dx.doi.org/10.1016/b0-08-043152-6/01312-7.
Pełny tekst źródłaStreszczenia konferencji na temat "Flow-induced crystallization"
Toga, Shinji, i Takatsune Narumi. "Flow Induced Crystallization of Colloidal Dispersion". W ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajk2011-14021.
Pełny tekst źródłaMu, Yue, Guoqun Zhao, Xianghong Wu i Guiwei Dong. "Numerical investigation of viscoelastic flow induced crystallization in polymer processing". W THE 11TH INTERNATIONAL CONFERENCE ON NUMERICAL METHODS IN INDUSTRIAL FORMING PROCESSES: NUMIFORM 2013. AIP, 2013. http://dx.doi.org/10.1063/1.4806932.
Pełny tekst źródłaZinet, Matthieu, Rabie El Otmani, M’hamed Boutaous i Patrice Chantrenne. "A Numerical Model for Non-Isothermal Flow Induced Crystallization in Thermoplastic Polymers". W ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-12122.
Pełny tekst źródłaScelsi, Lino, Dietmar Auhl, Harley Klein, Malcolm R. Mackley, Albert Co, Gary L. Leal, Ralph H. Colby i A. Jeffrey Giacomin. "Rheo-Optic Flow-induced Crystallization of Polyethylene and Polypropylene within Confined Flow Geometries". W THE XV INTERNATIONAL CONGRESS ON RHEOLOGY: The Society of Rheology 80th Annual Meeting. AIP, 2008. http://dx.doi.org/10.1063/1.2964655.
Pełny tekst źródłaHyun, Jae Chun, Hyun Wook Jung, Joo Sung Lee, Dong Myeong Shin, Seung Won Choi, Jeong Yong Lee, Albert Co, Gary L. Leal, Ralph H. Colby i A. Jeffrey Giacomin. "Transient Solutions of Nonlinear Dynamics in Film Blowing Accompanied by Flow-induced Crystallization". W THE XV INTERNATIONAL CONGRESS ON RHEOLOGY: The Society of Rheology 80th Annual Meeting. AIP, 2008. http://dx.doi.org/10.1063/1.2964706.
Pełny tekst źródłaMago, Gaurav, Frank T. Fisher i Dilhan M. Kalyon. "Effect of Shearing on the Crystallization Behavior of Poly (Butylene Terephthalate) and PBT Nanocomposites". W ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-14585.
Pełny tekst źródłaSteenbakkers, R. J. A., G. W. M. Peters, H. E. H. Meijer, Albert Co, Gary L. Leal, Ralph H. Colby i A. Jeffrey Giacomin. "Rheological Modeling of Flow-Induced Crystallization in Polymer Melts and Limitations on Classification of Experiments". W THE XV INTERNATIONAL CONGRESS ON RHEOLOGY: The Society of Rheology 80th Annual Meeting. AIP, 2008. http://dx.doi.org/10.1063/1.2964740.
Pełny tekst źródłaBoutaous, M’hamed, Matthieu Zinet, Rabie El Otmani i Patrick Bourgin. "Simulation of Polymer Crystallization: Role of the Visco-Elasticity". W ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-30209.
Pełny tekst źródłaRäntzsch, Volker, Mürüvvet Begüm Özen, Karl-Friedrich Ratzsch, Gisela Guthausen i Manfred Wilhelm. "Shear rheology and 1H TD-NMR combined to low-field RheoNMR: Set-up and application to quiescent and flow-induced crystallization of polymers". W NOVEL TRENDS IN RHEOLOGY VII. Author(s), 2017. http://dx.doi.org/10.1063/1.4982990.
Pełny tekst źródłaScruggs, D. M. "The Tribology of Amorphous Surfaces Formed by Wear of Thermal Spray Coatings". W ITSC 1998, redaktor Christian Coddet. ASM International, 1998. http://dx.doi.org/10.31399/asm.cp.itsc1998p0249.
Pełny tekst źródła