Artykuły w czasopismach na temat „Flow in porous media”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Flow in porous media.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Flow in porous media”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Jaakko, Miettinen, i Ilvonen Mikko. "ICONE15-10291 SOLVING POROUS MEDIA FLOW FOR LWR COMPONENTS". Proceedings of the International Conference on Nuclear Engineering (ICONE) 2007.15 (2007): _ICONE1510. http://dx.doi.org/10.1299/jsmeicone.2007.15._icone1510_146.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Blokhra, R. L., i J. Joshi. "Flow through Porous Media". Journal of Colloid and Interface Science 160, nr 1 (październik 1993): 260–61. http://dx.doi.org/10.1006/jcis.1993.1393.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Whitaker, Stephen. "Flow in porous media III: Deformable media". Transport in Porous Media 1, nr 2 (1986): 127–54. http://dx.doi.org/10.1007/bf00714689.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

STANLEY, H. E., A. D. ARAÚJO, U. M. S. COSTA i J. S. ANDRADE. "FLUID FLOW THROUGH DISORDERED POROUS MEDIA". Fractals 11, supp01 (luty 2003): 301–12. http://dx.doi.org/10.1142/s0218348x03001963.

Pełny tekst źródła
Streszczenie:
This talk briefly reviews the subject of fluid flow through disordered media. First, we use two-dimensional percolation networks as a simple model for porous media to investigate the dynamics of viscous penetration when the ratio between the viscosities of displaced and injected fluids is very large. The results indicate the possibility that viscous displacement through critical percolation networks constitutes a single universality class, independent of the viscosity ratio. We also focus on the sorts of considerations that may be necessary to move statistical physics from the description of idealized flows in the limit of zero Reynolds number to more realistic flows of real fluids moving at a nonzero velocity, when inertia effects may become relevant. We discuss several intriguing features, such as the surprisingly change in behavior from a "localized" to a "delocalized" flow structure (distribution of flow velocities) that seems to occur at a critical value of Re which is significantly smaller than the critical value of Re where turbulence sets in.
Style APA, Harvard, Vancouver, ISO itp.
5

Higdon, J. J. L. "Multiphase flow in porous media". Journal of Fluid Mechanics 730 (30.07.2013): 1–4. http://dx.doi.org/10.1017/jfm.2013.296.

Pełny tekst źródła
Streszczenie:
AbstractMultiphase flows in porous media represent fluid dynamics problems of great complexity involving a wide range of physical phenomena. These flows have attracted the attention of an impressive group of renowned researchers and have spawned a number of classic problems in fluid dynamics. These multiphase flows are perhaps best known for their importance in oil recovery from petroleum reservoirs, but they also find application in novel areas such as hydrofracturing for natural gas recovery. In a recent article, Zinchenko & Davis (J. Fluid Mech. 2013, vol. 725, pp. 611–663) present computational simulations that break new ground in the study of emulsions flowing through porous media. These simulations provide sufficient scale to capture the disordered motion and complex break-up patterns of individual droplets while providing sufficient statistical samples for estimating meaningful macroscopic properties of technical interest.
Style APA, Harvard, Vancouver, ISO itp.
6

Paillat, T., E. Moreau i G. Touchard. "Flow electrification through porous media". Journal of Loss Prevention in the Process Industries 14, nr 2 (marzec 2001): 91–93. http://dx.doi.org/10.1016/s0950-4230(00)00031-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Geindreau, Christian, i Jean-Louis Auriault. "Magnetohydrodynamic flow through porous media". Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics 329, nr 6 (czerwiec 2001): 445–50. http://dx.doi.org/10.1016/s1620-7742(01)01354-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Chan, Derek Y. C., Barry D. Hughes, Lincoln Paterson i Christina Sirakoff. "Simulating flow in porous media". Physical Review A 38, nr 8 (1.10.1988): 4106–20. http://dx.doi.org/10.1103/physreva.38.4106.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Feder, Jens, i Torstein Jøssang. "Fractal Flow in Porous Media". Physica Scripta T29 (1.01.1989): 200–205. http://dx.doi.org/10.1088/0031-8949/1989/t29/037.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Adler, P. M., i H. Brenner. "Multiphase Flow in Porous Media". Annual Review of Fluid Mechanics 20, nr 1 (styczeń 1988): 35–59. http://dx.doi.org/10.1146/annurev.fl.20.010188.000343.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Koponen, A., M. Kataja i J. Timonen. "Tortuous flow in porous media". Physical Review E 54, nr 1 (1.07.1996): 406–10. http://dx.doi.org/10.1103/physreve.54.406.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Rojas, Sergio, i Joel Koplik. "Nonlinear flow in porous media". Physical Review E 58, nr 4 (1.10.1998): 4776–82. http://dx.doi.org/10.1103/physreve.58.4776.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Barr, Douglas W. "Turbulent Flow Through Porous Media". Ground Water 39, nr 5 (wrzesień 2001): 646–50. http://dx.doi.org/10.1111/j.1745-6584.2001.tb02353.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Adler, P. M., C. G. Jacquin i J. A. Quiblier. "Flow in simulated porous media". International Journal of Multiphase Flow 16, nr 4 (lipiec 1990): 691–712. http://dx.doi.org/10.1016/0301-9322(90)90025-e.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Nazari Moghaddam, Rasoul, i Mahmoud Jamiolahmady. "Slip flow in porous media". Fuel 173 (czerwiec 2016): 298–310. http://dx.doi.org/10.1016/j.fuel.2016.01.057.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Layton, William J., Friedhelm Schieweck i Ivan Yotov. "Coupling Fluid Flow with Porous Media Flow". SIAM Journal on Numerical Analysis 40, nr 6 (styczeń 2002): 2195–218. http://dx.doi.org/10.1137/s0036142901392766.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Gruais, Isabelle, i Dan Poliševski. "Thermal flows in fractured porous media". ESAIM: Mathematical Modelling and Numerical Analysis 55, nr 3 (maj 2021): 789–805. http://dx.doi.org/10.1051/m2an/2020087.

Pełny tekst źródła
Streszczenie:
We consider the thermal flow problem occuring in a fractured porous medium. The incompressible filtration flow in the porous matrix and the viscous flow in the fractures obey the Boussinesq approximation of Darcy-Forchheimer law and respectively, the Stokes system. They are coupled by the Saffman’s variant of the Beavers–Joseph condition. Existence and uniqueness properties are presented. The use of the energy norm in describing the Darcy-Forchheimer law proves to be appropriate. In the ε-periodic framework, we find the two-scale homogenized system which governs their asymptotic behaviours when ε → 0 and the Forchheimer effect vanishes. The limit problem is mainly a model of two coupled thermal flows, neither of them being incompressible.
Style APA, Harvard, Vancouver, ISO itp.
18

NAKAI, Hirotaka, Nobuhiro KIMURA, Masahide MURAKAMI, Tomiyoshi HARUYAMA i Akira YAMAMOTO. "Superfluid Helium Flow through Porous Media." TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan) 31, nr 9 (1996): 474–80. http://dx.doi.org/10.2221/jcsj.31.474.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Nakai, H., N. Kimura, M. Murakami, T. Haruyama i A. Yamamoto. "Superfluid helium flow through porous media". Cryogenics 36, nr 9 (wrzesień 1996): 667–73. http://dx.doi.org/10.1016/0011-2275(96)00030-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Dodson, C. T. J., i W. W. Sampson. "Flow Simulation in Stochastic Porous Media". SIMULATION 74, nr 6 (czerwiec 2000): 351–58. http://dx.doi.org/10.1177/003754970007400604.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Watson, A. Ted, Raghavendra Kulkarni, Jan-Erik Nordtvedt, Andre Sylte i Hege Urkedal. "Estimation of porous media flow functions". Measurement Science and Technology 9, nr 6 (1.06.1998): 898–905. http://dx.doi.org/10.1088/0957-0233/9/6/006.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Kordulová, P. "Hysteresis in flow through porous media". Journal of Physics: Conference Series 268 (1.01.2011): 012014. http://dx.doi.org/10.1088/1742-6596/268/1/012014.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Sochi, Taha. "Non-Newtonian flow in porous media". Polymer 51, nr 22 (październik 2010): 5007–23. http://dx.doi.org/10.1016/j.polymer.2010.07.047.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Winter, C. L., i Daniel M. Tartakovsky. "Mean Flow in composite porous media". Geophysical Research Letters 27, nr 12 (15.06.2000): 1759–62. http://dx.doi.org/10.1029/1999gl011030.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

DENTZ, M., D. M. TARTAKOVSKY, E. ABARCA, A. GUADAGNINI, X. SANCHEZ-VILA i J. CARRERA. "Variable-density flow in porous media". Journal of Fluid Mechanics 561 (sierpień 2006): 209. http://dx.doi.org/10.1017/s0022112006000668.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

LIU, SHIJIE, i JACOB H. MASLIYAH. "SINGLE FLUID FLOW IN POROUS MEDIA". Chemical Engineering Communications 148-150, nr 1 (czerwiec 1996): 653–732. http://dx.doi.org/10.1080/00986449608936537.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

FABRIE, PIERRE, i THIERRY GALLOUËT. "MODELING WELLS IN POROUS MEDIA FLOW". Mathematical Models and Methods in Applied Sciences 10, nr 05 (lipiec 2000): 673–709. http://dx.doi.org/10.1142/s0218202500000367.

Pełny tekst źródła
Streszczenie:
In this paper, we prove the existence of weak solutions for mathematical models of miscible and immiscible flow through porous medium. An important difficulty comes from the modelization of the wells, which does not allow us to use classical variational formulations of the equations.
Style APA, Harvard, Vancouver, ISO itp.
28

Moura, M., K. J. Måløy i R. Toussaint. "Critical behavior in porous media flow". EPL (Europhysics Letters) 118, nr 1 (1.04.2017): 14004. http://dx.doi.org/10.1209/0295-5075/118/14004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Dejam, Morteza, Hassan Hassanzadeh i Zhangxin Chen. "Pre-Darcy Flow in Porous Media". Water Resources Research 53, nr 10 (październik 2017): 8187–210. http://dx.doi.org/10.1002/2017wr021257.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Farinato, Raymond S., i Wei S. Yen. "Polymer degradation in porous media flow". Journal of Applied Polymer Science 33, nr 7 (20.05.1987): 2353–68. http://dx.doi.org/10.1002/app.1987.070330708.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Dullien, Francis A. L. "Two-phase flow in porous media". Chemical Engineering & Technology - CET 11, nr 1 (1988): 407–24. http://dx.doi.org/10.1002/ceat.270110153.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Massmann, Joel, i Lisa Johnson. "Exercises Illustrating Flow in Porous Media". Ground Water 39, nr 4 (lipiec 2001): 499–503. http://dx.doi.org/10.1111/j.1745-6584.2001.tb02338.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Reinson, Jeff R., Delwyn G. Fredlund i G. Ward Wilson. "Unsaturated flow in coarse porous media". Canadian Geotechnical Journal 42, nr 1 (1.02.2005): 252–62. http://dx.doi.org/10.1139/t04-070.

Pełny tekst źródła
Streszczenie:
Design of effective capillary barrier systems requires a thorough understanding of the soil–water interactions that take place in both coarse- and fine-grained unsaturated soils. Experimental observations of water flow through coarse porous media are presented to gain greater understanding of the processes and mechanisms that contribute to the movement and retention of water in coarse-grained unsaturated soils. The use of pendular ring theory to describe how water is held within a porous material with relatively low volumetric water contents is explored. Experimental measurements of seepage velocity and volumetric water content were obtained for columns of 12 mm glass beads using digital videography to capture the movement of a dye tracer front at several infiltration rates. An estimated curve for hydraulic conductivity versus matric suction is shown and compared to a theoretical curve. The method is shown to provide a reasonable predictive tool.Key words: soil-water characteristic curve, hydraulic conductivity curve, water permeability function, capillary barrier, matric suction.
Style APA, Harvard, Vancouver, ISO itp.
34

Entov, V. M. "Micromechanics of flow through porous media". Fluid Dynamics 27, nr 6 (1993): 824–33. http://dx.doi.org/10.1007/bf01051359.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Hamdan, M. H., i K. D. Sawalha. "Dusty gas flow through porous media". Applied Mathematics and Computation 75, nr 1 (marzec 1996): 59–73. http://dx.doi.org/10.1016/0096-3003(95)00104-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Gun, Wei Jin, i Alexander F. Routh. "Microcapsule flow behaviour in porous media". Chemical Engineering Science 102 (październik 2013): 309–14. http://dx.doi.org/10.1016/j.ces.2013.08.028.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Adler, Pierre M. "Multiphase flow in porous media ? Preface". Transport in Porous Media 20, nr 1-2 (sierpień 1995): 1. http://dx.doi.org/10.1007/bf00616922.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Zhu, Tao, i Michael Manhart. "Oscillatory Darcy Flow in Porous Media". Transport in Porous Media 111, nr 2 (14.12.2015): 521–39. http://dx.doi.org/10.1007/s11242-015-0609-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

El Tawil, M. A., i M. H. Kamel. "MHD flow under stochastic porous media". Energy Conversion and Management 35, nr 11 (listopad 1994): 991–97. http://dx.doi.org/10.1016/0196-8904(94)90030-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Du Plessis, J. Prieur, i Jacob H. Masliyah. "Flow through isotropic granular porous media". Transport in Porous Media 6, nr 3 (czerwiec 1991): 207–21. http://dx.doi.org/10.1007/bf00208950.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Sauveplane, Claude M. "Flow in porous or fractured media". Journal of Hydrology 97, nr 3-4 (luty 1988): 353–55. http://dx.doi.org/10.1016/0022-1694(88)90125-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Buyevich, Yu A., i V. S. Nustrov. "Nonlinear flow in fractured porous media". Transport in Porous Media 12, nr 1 (lipiec 1993): 1–17. http://dx.doi.org/10.1007/bf00616358.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Mahadevan, Jagannathan, Mukul M. Sharma i Yannis C. Yortsos. "Flow-through drying of porous media". AIChE Journal 52, nr 7 (2006): 2367–80. http://dx.doi.org/10.1002/aic.10859.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Gayubov, A. T. "Non-Darcy Flow Through Porous Media". Proceedings of Gubkin Russian State University of Oil and Gas, nr 1 (2021): 19–28. http://dx.doi.org/10.33285/2073-9028-2021-1(302)-19-28.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Liu, Hai Long, Junfeng Wang i Wook Ryol Hwang. "Flow resistance of viscoelastic flows in fibrous porous media". Journal of Non-Newtonian Fluid Mechanics 246 (sierpień 2017): 21–30. http://dx.doi.org/10.1016/j.jnnfm.2017.05.004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

GRAHAM, D. R., i J. J. L. HIGDON. "Oscillatory forcing of flow through porous media. Part 1. Steady flow". Journal of Fluid Mechanics 465 (25.08.2002): 213–35. http://dx.doi.org/10.1017/s0022112002001155.

Pełny tekst źródła
Streszczenie:
Oscillatory forcing of a porous medium may have a dramatic effect on the mean flow rate produced by a steady applied pressure gradient. The oscillatory forcing may excite nonlinear inertial effects leading to either enhancement or retardation of the mean flow. Here, in Part 1, we consider the effects of non-zero inertial forces on steady flows in porous media, and investigate the changes in the flow character arising from changes in both the strength of the inertial terms and the geometry of the medium. The steady-state Navier–Stokes equations are solved via a Galerkin finite element method to determine the velocity fields for simple two-dimensional models of porous media. Two geometric models are considered based on constricted channels and periodic arrays of circular cylinders. For both geometries, we observe solution multiplicity yielding both symmetric and asymmetric flow patterns. For the cylinder arrays, we demonstrate that inertial effects lead to anisotropy in the effective permeability, with the direction of minimum resistance dependent on the solid volume fraction. We identify nonlinear flow phenomena which might be exploited by oscillatory forcing to yield a net increase in the mean flow rate. In Part 2, we take up the subject of unsteady flows governed by the full time-dependent Navier–Stokes equations.
Style APA, Harvard, Vancouver, ISO itp.
47

Christie, M. A. "Flow in porous media — scale up of multiphase flow". Current Opinion in Colloid & Interface Science 6, nr 3 (czerwiec 2001): 236–41. http://dx.doi.org/10.1016/s1359-0294(01)00087-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Kawale, Durgesh, Gelmer Bouwman, Shaurya Sachdev, Pacelli L. J. Zitha, Michiel T. Kreutzer, William R. Rossen i Pouyan E. Boukany. "Polymer conformation during flow in porous media". Soft Matter 13, nr 46 (2017): 8745–55. http://dx.doi.org/10.1039/c7sm00817a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Sakamoto, H., i F. A. Kulacki. "Buoyancy Driven Flow in Saturated Porous Media". Journal of Heat Transfer 129, nr 6 (24.09.2006): 727–34. http://dx.doi.org/10.1115/1.2717937.

Pełny tekst źródła
Streszczenie:
Measurements are reported of heat transfer coefficients in steady natural convection on a vertical constant flux plate embedded in a saturated porous medium. Results show that heat transfer coefficients can be adequately determined via a Darcy-based model, and our results confirm a correlation proposed by Bejan [Int. J. Heat Mass Transfer. 26(9), 1339–1346 (1983)]. It is speculated that the reason that the Darcy model works well in the present case is that the porous medium has a lower effective Prandtl number near the wall than in the bulk medium. The factors that contribute to this effect include the thinning of the boundary layer near the wall and an increase of effective thermal conductivity.
Style APA, Harvard, Vancouver, ISO itp.
50

Haward, Simon J., Cameron C. Hopkins i Amy Q. Shen. "Stagnation points control chaotic fluctuations in viscoelastic porous media flow". Proceedings of the National Academy of Sciences 118, nr 38 (14.09.2021): e2111651118. http://dx.doi.org/10.1073/pnas.2111651118.

Pełny tekst źródła
Streszczenie:
Viscoelastic flows through porous media become unstable and chaotic beyond critical flow conditions, impacting widespread industrial and biological processes such as enhanced oil recovery and drug delivery. Understanding the influence of the pore structure or geometry on the onset of flow instability can lead to fundamental insights into these processes and, potentially, to their optimization. Recently, for viscoelastic flows through porous media modeled by arrays of microscopic posts, Walkama et al. [D. M. Walkama, N. Waisbord, J. S. Guasto, Phys. Rev. Lett. 124, 164501 (2020)] demonstrated that geometric disorder greatly suppressed the strength of the chaotic fluctuations that arose as the flow rate was increased. However, in that work, disorder was only applied to one originally ordered configuration of posts. Here, we demonstrate experimentally that, given a slightly modified ordered array of posts, introducing disorder can also promote chaotic fluctuations. We provide a unifying explanation for these contrasting results by considering the effect of disorder on the occurrence of stagnation points exposed to the flow field, which depends on the nature of the originally ordered post array. This work provides a general understanding of how pore geometry affects the stability of viscoelastic porous media flows.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii