Gotowa bibliografia na temat „Flow in porous media”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Flow in porous media”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Flow in porous media"

1

Jaakko, Miettinen, i Ilvonen Mikko. "ICONE15-10291 SOLVING POROUS MEDIA FLOW FOR LWR COMPONENTS". Proceedings of the International Conference on Nuclear Engineering (ICONE) 2007.15 (2007): _ICONE1510. http://dx.doi.org/10.1299/jsmeicone.2007.15._icone1510_146.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Blokhra, R. L., i J. Joshi. "Flow through Porous Media". Journal of Colloid and Interface Science 160, nr 1 (październik 1993): 260–61. http://dx.doi.org/10.1006/jcis.1993.1393.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Whitaker, Stephen. "Flow in porous media III: Deformable media". Transport in Porous Media 1, nr 2 (1986): 127–54. http://dx.doi.org/10.1007/bf00714689.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

STANLEY, H. E., A. D. ARAÚJO, U. M. S. COSTA i J. S. ANDRADE. "FLUID FLOW THROUGH DISORDERED POROUS MEDIA". Fractals 11, supp01 (luty 2003): 301–12. http://dx.doi.org/10.1142/s0218348x03001963.

Pełny tekst źródła
Streszczenie:
This talk briefly reviews the subject of fluid flow through disordered media. First, we use two-dimensional percolation networks as a simple model for porous media to investigate the dynamics of viscous penetration when the ratio between the viscosities of displaced and injected fluids is very large. The results indicate the possibility that viscous displacement through critical percolation networks constitutes a single universality class, independent of the viscosity ratio. We also focus on the sorts of considerations that may be necessary to move statistical physics from the description of idealized flows in the limit of zero Reynolds number to more realistic flows of real fluids moving at a nonzero velocity, when inertia effects may become relevant. We discuss several intriguing features, such as the surprisingly change in behavior from a "localized" to a "delocalized" flow structure (distribution of flow velocities) that seems to occur at a critical value of Re which is significantly smaller than the critical value of Re where turbulence sets in.
Style APA, Harvard, Vancouver, ISO itp.
5

Higdon, J. J. L. "Multiphase flow in porous media". Journal of Fluid Mechanics 730 (30.07.2013): 1–4. http://dx.doi.org/10.1017/jfm.2013.296.

Pełny tekst źródła
Streszczenie:
AbstractMultiphase flows in porous media represent fluid dynamics problems of great complexity involving a wide range of physical phenomena. These flows have attracted the attention of an impressive group of renowned researchers and have spawned a number of classic problems in fluid dynamics. These multiphase flows are perhaps best known for their importance in oil recovery from petroleum reservoirs, but they also find application in novel areas such as hydrofracturing for natural gas recovery. In a recent article, Zinchenko & Davis (J. Fluid Mech. 2013, vol. 725, pp. 611–663) present computational simulations that break new ground in the study of emulsions flowing through porous media. These simulations provide sufficient scale to capture the disordered motion and complex break-up patterns of individual droplets while providing sufficient statistical samples for estimating meaningful macroscopic properties of technical interest.
Style APA, Harvard, Vancouver, ISO itp.
6

Paillat, T., E. Moreau i G. Touchard. "Flow electrification through porous media". Journal of Loss Prevention in the Process Industries 14, nr 2 (marzec 2001): 91–93. http://dx.doi.org/10.1016/s0950-4230(00)00031-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Geindreau, Christian, i Jean-Louis Auriault. "Magnetohydrodynamic flow through porous media". Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics 329, nr 6 (czerwiec 2001): 445–50. http://dx.doi.org/10.1016/s1620-7742(01)01354-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Chan, Derek Y. C., Barry D. Hughes, Lincoln Paterson i Christina Sirakoff. "Simulating flow in porous media". Physical Review A 38, nr 8 (1.10.1988): 4106–20. http://dx.doi.org/10.1103/physreva.38.4106.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Feder, Jens, i Torstein Jøssang. "Fractal Flow in Porous Media". Physica Scripta T29 (1.01.1989): 200–205. http://dx.doi.org/10.1088/0031-8949/1989/t29/037.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Adler, P. M., i H. Brenner. "Multiphase Flow in Porous Media". Annual Review of Fluid Mechanics 20, nr 1 (styczeń 1988): 35–59. http://dx.doi.org/10.1146/annurev.fl.20.010188.000343.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Flow in porous media"

1

Little, Sylvia Bandy. "Multiphase flow through porous media". Thesis, Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/11779.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Booth, Richard J. S. "Miscible flow through porous media". Thesis, University of Oxford, 2008. http://ora.ox.ac.uk/objects/uuid:542d3ec1-2894-4a34-9b93-94bc639720c9.

Pełny tekst źródła
Streszczenie:
This thesis is concerned with the modelling of miscible fluid flow through porous media, with the intended application being the displacement of oil from a reservoir by a solvent with which the oil is miscible. The primary difficulty that we encounter with such modelling is the existence of a fingering instability that arises from the viscosity and the density differences between the oil and solvent. We take as our basic model the Peaceman model, which we derive from first principles as the combination of Darcy’s law with the mass transport of solvent by advection and hydrodynamic dispersion. In the oil industry, advection is usually dominant, so that the Péclet number, Pe, is large. We begin by neglecting the effect of density differences between the two fluids and concentrate only on the viscous fingering instability. A stability analysis and numerical simulations are used to show that the wavelength of the instability is proportional to Pe^−1/2, and hence that a large number of fingers will be formed. We next apply homogenisation theory to investigate the evolution of the average concentration of solvent when the mean flow is one-dimensional, and discuss the rationale behind the Koval model. We then attempt to explain why the mixing zone in which fingering is present grows at the observed rate, which is different from that predicted by a naive version of the Koval model. We associate the shocks that appear in our homogenised model with the tips and roots of the fingers, the tip-regions being modelled by Saffman-Taylor finger solutions. We then extend our model to consider flow through porous media that are heterogeneous at the macroscopic scale, and where the mean flow is not one dimensional. We compare our model with that of Todd & Longstaff and also models for immiscible flow through porous media. Finally, we extend our work to consider miscible displacements in which both density and viscosity differences between the two fluids are relevant.
Style APA, Harvard, Vancouver, ISO itp.
3

Sheng, James Jiaping. "Foamy oil flow in porous media". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq21633.pdf.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Schechter, David S. "Immiscible flow behaviour in porous media". Thesis, University of Bristol, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.234777.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

GAMA, ROGERIO MARTINS SALDANHA DA. "MODELLING OF FLOW IN POROUS MEDIA". PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1985. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=33487@1.

Pełny tekst źródła
Streszczenie:
CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
O presente trabalho tem como objetivo a modelagem de escoamentos através de meios porosos, sob o ponto de vista da Teoria Contínua de misturas. O fluido e o sólido, que compõe o meio poroso, são tratados como constituintes contínuos de uma mistura binária, onde não ocorrem reações químicas. Em todas as situações aqui tratadas o fluido é suposto Newtoniano e incompressível, enquanto o meio poroso é rígido, homogêneo e isotrópico. O trabalho pode ser dividido em duas partes principais. Na primeira são modelados escoamentos através de regiões contendo meios porosos saturados e regiões onde só existe o fluido. São discutidas condições de compatibilidade sobre as interfaces, que separam as regiões, e é estabelecido um modelo para escoamentos, nos quais não exista fluxo de massa através das interfaces. A segunda parte trata de escoamentos em meios porosos insaturados, onde é preciso se considerar o efeito de forças capilares. Nesta parte é estabelecido um modelo e são simuladas situações unidimensionais. São estudados vários casos entre eles o enchimento de uma placa porosa, com e sem efeitos de atrito e de forças gravitacionais. A obtenção de resultados, nestes casos, exige a solução numérica de um sistema hiperbólico não-linear de equações diferenciais.
This work aims to a modelling of flow through a porous media based upon the Continuum Theory of Mixtures. The fluid and the solid, which composes the porous media, are assumed as continuous constituent of a binary mixture where chemical reactions do not occur. In all situations here considered, the fluid is assuned Newtonian and incompressíble, while the porous media is rigid, homogeneus and isotropic. This work can be divided in two main parts. In the first one, flows are modelled through regions containing saturated porous media and regions where there is nothing but the fluid. Conditions of compatibility in the interfaces that divide the regions are discussed and a flow modelling is stablished where there are no crosaflow through the interfaces. The second part is concerned with flows in unsaturated porous media, where the effect of capillery pressure is considered. In this Part a model is stablished and unidimensíonal situations are simulated. Several cases are studied and the filling-up of a porous plate is among them, with and without frictíon effect and gravitational forces. The obtainment of results, in such cases, requires the numeric solution of a non-linear hyperbolíc system of differential equations.
Style APA, Harvard, Vancouver, ISO itp.
6

Batycky, Richard Panko. "Inhomogeneous Stokes flow through porous media". Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/36640.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Sheng, Jopan. "Multiphase immiscible flow through porous media". Diss., Virginia Polytechnic Institute and State University, 1986. http://hdl.handle.net/10919/53630.

Pełny tekst źródła
Streszczenie:
A finite element model is developed for multiphase flow through soil involving three immiscible fluids: namely air, water, and an organic fluid. A variational method is employed for the finite element formulation corresponding to the coupled differential equations governing the flow of the three fluid phase porous medium system with constant air phase pressure. Constitutive relationships for fluid conductivities and saturations as functions of fluid pressures which may be calibrated from two-phase laboratory measurements, are employed in the finite element program. The solution procedure uses iteration by a modified Picard method to handle the nonlinear properties and the backward method for a stable time integration. Laboratory experiments involving soil columns initially saturated with water and displaced by p-cymene (benzene-derivative hydrocarbon) under constant pressure were simulated by the finite element model to validate the numerical model and formulation for constitutive properties. Transient water outflow predicted using independently measured capillary head-saturation data agreed well with observed outflow data. Two-dimensional simulations are presented for eleven hypothetical field cases involving introduction of an organic fluid near the soil surface due to leakage from an underground storage tank. The subsequent transport of the organic fluid in the variably saturated vadose and ground water zones is analysed.
Ph. D.
Style APA, Harvard, Vancouver, ISO itp.
8

Woudberg, Sonia. "Laminar flow through isotropic granular porous media". Thesis, Link to the online version, 2006. http://hdl.handle.net/10019/1320.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Caruana, Albert. "Immiscible flow behaviour within heterogeneous porous media". Thesis, University of London, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.285232.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Ababou, R. (Rachid). "Three-dimensional flow in random porous media". Thesis, Massachusetts Institute of Technology, 1988. http://hdl.handle.net/1721.1/14675.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Flow in porous media"

1

Douglas, Jim, i Ulrich Hornung, red. Flow in Porous Media. Basel: Birkhäuser Basel, 1993. http://dx.doi.org/10.1007/978-3-0348-8564-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Ene, Horia I. Thermal flow in porous media. Dordrecht, Holland: D. Reidel Pub. Co., 1987.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Allen, Myron Bartlett, Grace Alda Behie i John Arthur Trangenstein. Multiphase Flow in Porous Media. New York, NY: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-9598-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Adler, Pierre M., red. Multiphase Flow in Porous Media. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-017-2372-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Das, D. B., i S. M. Hassanizadeh, red. Upscaling Multiphase Flow in Porous Media. Berlin/Heidelberg: Springer-Verlag, 2005. http://dx.doi.org/10.1007/1-4020-3604-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Dynamics of fluids in porous media. New York: Dover, 1988.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

NATO Advanced Study Institute on Transport Processes in Porous Media (1989 Pullman, Wash.). Transport processes in porous media. Dordrecht: Kluwer Academic Publishers, 1991.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Pinder, George Francis. Essentials of multiphase flow in porous media. Hoboken, N.J: J. Wiley, 2008.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Holzbecher, Ekkehard O. Modeling Density-Driven Flow in Porous Media. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-58767-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Hunt, Allen, Robert Ewing i Behzad Ghanbarian. Percolation Theory for Flow in Porous Media. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03771-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Flow in porous media"

1

Jansen, Jan Dirk. "Porous-Media Flow". W A Systems Description of Flow Through Porous Media, 1–37. Heidelberg: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00260-6_1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Bear, Jacob. "Porous Media". W Modeling Phenomena of Flow and Transport in Porous Media, 1–98. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72826-1_1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Coutelieris, Frank A., i J. M. P. Q. Delgado. "Flow in Porous Media". W Advanced Structured Materials, 23–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27910-2_3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Pedretti, Daniele. "Flow in Porous Media". W Encyclopedia of Mathematical Geosciences, 1–6. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-26050-7_115-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Bejan, Adrian, Ibrahim Dincer, Sylvie Lorente, Antonio F. Miguel i A. Heitor Reis. "Porous Media Fundamentals". W Porous and Complex Flow Structures in Modern Technologies, 1–29. New York, NY: Springer New York, 2004. http://dx.doi.org/10.1007/978-1-4757-4221-3_1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Douglas, Jim. "Introduction". W Flow in Porous Media, 1–3. Basel: Birkhäuser Basel, 1993. http://dx.doi.org/10.1007/978-3-0348-8564-5_1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Keyfitz, Barbara Lee. "Multiphase Saturation Equations, Change of Type and Inaccessible Regions". W Flow in Porous Media, 103–16. Basel: Birkhäuser Basel, 1993. http://dx.doi.org/10.1007/978-3-0348-8564-5_10.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Kozlov, S. M. "A Central Limit Theorem for Multiscaled Permeability". W Flow in Porous Media, 117–27. Basel: Birkhäuser Basel, 1993. http://dx.doi.org/10.1007/978-3-0348-8564-5_11.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Meyer, Gunter H. "Front Tracking for the Unstable Hele-Shaw and Muskat Problems". W Flow in Porous Media, 129–37. Basel: Birkhäuser Basel, 1993. http://dx.doi.org/10.1007/978-3-0348-8564-5_12.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Mikelić, Andro. "Regularity and Uniqueness Results for Two-Phase Miscible Flows in Porous Media". W Flow in Porous Media, 139–54. Basel: Birkhäuser Basel, 1993. http://dx.doi.org/10.1007/978-3-0348-8564-5_13.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Flow in porous media"

1

Baigorria, R., J. L. Pousa, F. Di Leo i J. Maranon. "Flow In Porous Media". W SPE Latin America/Caribbean Petroleum Engineering Conference. Society of Petroleum Engineers, 1994. http://dx.doi.org/10.2118/26971-ms.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Bourgeat, Alain P., Claude Carasso, Stephan Luckhaus i Andro Mikelić. "Mathematical Modelling of Flow Through Porous Media". W Conference on Mathematical Modelling of Flow Through Porous Media. WORLD SCIENTIFIC, 1996. http://dx.doi.org/10.1142/9789814531955.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Kalyanaraman, Balaje, Michael Meylan i Bishnu Lamichhane. "Coupling Fluid Flow and Porous Media Flow". W 22nd Australasian Fluid Mechanics Conference AFMC2020. Brisbane, Australia: The University of Queensland, 2020. http://dx.doi.org/10.14264/524e1db.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Spanos, T. J. T., V. De La Cruz i J. Eastwood. "Fluid Flow In Inhomogeneous Porous Media". W Annual Technical Meeting. Petroleum Society of Canada, 1991. http://dx.doi.org/10.2118/91-56.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Teigland, R., i G. E. Fladmark. "Multilevel Methods in Porous Media Flow". W ECMOR II - 2nd European Conference on the Mathematics of Oil Recovery. European Association of Geoscientists & Engineers, 1990. http://dx.doi.org/10.3997/2214-4609.201411141.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Smirnov, N. N., V. R. Dushin, V. F. Nikitin, O. E. Ivashnyov, O. Logvinov, M. Thiercelin i J. C. Legros. "Viscous fluids flow in porous media." W 57th International Astronautical Congress. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.iac-06-a2.4.06.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Romero, Mao Ilich. "Flow of Emulsions in Porous Media". W SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 2009. http://dx.doi.org/10.2118/129519-stu.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

STANLEY, H. E., A. D. ARAÚJO, U. M. S. COSTA i J. S. ANDRADE. "FLUID FLOW THROUGH DISORDERED POROUS MEDIA". W International Workshop and Collection of Articles Honoring Professor Antonio Coniglio on the Occasion of his 60th Birthday. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812778109_0031.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Smith, Gregory M., i Kevin R. Hall. "Oscillatory Flow Investigations in Porous Media". W 22nd International Conference on Coastal Engineering. New York, NY: American Society of Civil Engineers, 1991. http://dx.doi.org/10.1061/9780872627765.201.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Suekane, T., T. Izumi i K. Okada. "Capillary trapping of supercritical CO2in porous media at the pore scale". W MULTIPHASE FLOW 2011. Southampton, UK: WIT Press, 2011. http://dx.doi.org/10.2495/mpf110261.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Flow in porous media"

1

Firoozabadi, A. Multiphase flow in fractured porous media. Office of Scientific and Technical Information (OSTI), luty 1995. http://dx.doi.org/10.2172/10117349.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

An, L., J. Glimm, Q. Zhang i Q. Zhang. Scale up of flow in porous media. Office of Scientific and Technical Information (OSTI), wrzesień 1995. http://dx.doi.org/10.2172/106512.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Papathanasiou, Thanasis D. Fluid Flow and Infiltration in Structured Fibrous Porous Media. Office of Scientific and Technical Information (OSTI), sierpień 2006. http://dx.doi.org/10.2172/899242.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Miksis, M. J. Effects of capillarity on microscopic flow in porous media. Office of Scientific and Technical Information (OSTI), styczeń 1993. http://dx.doi.org/10.2172/6768232.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Liu, Dianbin, i W. E. Brigham. Transient foam flow in porous media with CAT Scanner. Office of Scientific and Technical Information (OSTI), marzec 1992. http://dx.doi.org/10.2172/5573805.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Wingard, J. S., i F. M. Jr Orr. Multicomponent, multiphase flow in porous media with temperature variation. Office of Scientific and Technical Information (OSTI), październik 1990. http://dx.doi.org/10.2172/6200807.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Liu, Dianbin, i W. E. Brigham. Transient foam flow in porous media with CAT Scanner. Office of Scientific and Technical Information (OSTI), marzec 1992. http://dx.doi.org/10.2172/10132657.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Shah, C., i Y. C. Yortsos. Aspects of non-Newtonian flow and displacement in porous media. Office of Scientific and Technical Information (OSTI), luty 1993. http://dx.doi.org/10.2172/10134743.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Kovscek, A. R., i C. J. Radke. A comprehensive description of transient foam flow in porous media. Office of Scientific and Technical Information (OSTI), styczeń 1993. http://dx.doi.org/10.2172/10103735.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Hughes, R. G., W. E. Brigham i L. M. Castanier. CT measurements of two-phase flow in fractured porous media. Office of Scientific and Technical Information (OSTI), czerwiec 1997. http://dx.doi.org/10.2172/501525.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii