Spis treści
Gotowa bibliografia na temat „Flot de la courbure moyenne”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Flot de la courbure moyenne”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Flot de la courbure moyenne"
Quadjovie, Horatio. "Flot de courbure moyenne modifiée avec obstacle conique". Bulletin des Sciences Mathématiques 128, nr 6 (lipiec 2004): 447–66. http://dx.doi.org/10.1016/j.bulsci.2003.11.002.
Pełny tekst źródłaFanaï, Hamid-Reza. "Conjugaison Géodésique en rang 1". Bulletin of the Australian Mathematical Society 71, nr 1 (luty 2005): 121–26. http://dx.doi.org/10.1017/s0004972700038077.
Pełny tekst źródłaPacard, Frank. "Construction de surfaces à courbure moyenne constante". Séminaire de théorie spectrale et géométrie 17 (1999): 139–57. http://dx.doi.org/10.5802/tsg.212.
Pełny tekst źródłaCoudène, Yves. "Sur l'ergodicité du flot géodésique en courbure négative ou nulle". L’Enseignement Mathématique 57, nr 1 (2011): 117–53. http://dx.doi.org/10.4171/lem/57-1-6.
Pełny tekst źródłaBesson, Gérard. "Ergodicité du flot géodésique des surfaces riemanniennes à courbure -1". Séminaire de théorie spectrale et géométrie S9 (1991): 25–31. http://dx.doi.org/10.5802/tsg.109.
Pełny tekst źródłaLieutier, Denis. "Monotonie du périmètre et de la courbure moyenne". Quadrature, nr 71 (13.12.2008): 12–17. http://dx.doi.org/10.1051/quadrature:2008014.
Pełny tekst źródłaCONZE, J. P., i S. LE BORGNE. "Méthode de martingales et flot géodésique sur une surface de courbure constante négative". Ergodic Theory and Dynamical Systems 21, nr 2 (30.03.2001): 421–41. http://dx.doi.org/10.1017/s0143385701001213.
Pełny tekst źródłaHélein, Frédéric. "Surfaces à courbure moyenne constante et inégalité de Wente". Séminaire de théorie spectrale et géométrie 15 (1997): 43–52. http://dx.doi.org/10.5802/tsg.179.
Pełny tekst źródłaPajot, Hervé. "Plongements bilipschitziens dans les espaces euclidiens, Q-courbure et flot quasi-conforme". Séminaire de théorie spectrale et géométrie 25 (2007): 149–58. http://dx.doi.org/10.5802/tsg.252.
Pełny tekst źródłaCherrier, Pascal, i Abdellah Hanani. "Hypersurfaces compactes d'un fibré vectoriel riemannien à courbure moyenne prescrite". Comptes Rendus Mathematique 335, nr 6 (wrzesień 2002): 525–28. http://dx.doi.org/10.1016/s1631-073x(02)02500-1.
Pełny tekst źródłaRozprawy doktorskie na temat "Flot de la courbure moyenne"
Marachli, Alaa. "Sur la stabilité de certaines surfaces minimales sous le flot de courbure moyenne nulle dans l'espace de Minkowski". Thesis, Paris Est, 2019. http://www.theses.fr/2019PESC0034.
Pełny tekst źródłaThis thesis focuses on the stability of some minimal surfaces under the vanishing mean curvature flow in Minkowski space. This issue amounts to investigate a system which turns out to be hyperbolic as long as the involved surfaces are time-like surfaces.The work presented here includes two parts. The first part in joint work with Hajer Bahouri and Galina Perelman is dedicated to the issue of singularity formation in finite time for surfaces asymptotic to the Simons cone at infinity and the second part is devoted to the study of the stability of the helicoid.In the first part of this thesis, we prove by a constructive approach the existence of a family of surfaces which evolve by the vanishing mean curvature flow in Minkowski space and which as t tends to~0 blow up towards a surface which behaves like the Simons cone at infinity. This issue amounts to investigate the singularity formation for a second order quasilinear wave equation.The aim of the second part is to investigate the stability of the helicoid under normal radial perturbations. Actually, the helicoid is linearly unstable of index 1, and that is why we cannot expect to have stability for arbitrary perturbations. In this part, we establish that this instability is the only obstruction to the global nonlinear stability for the helicoid. More precisely, in the framework of normal radial perturbations, we prove the existence of a codimension one set of small initial data generating global solutions converging to the helicoid at infinity
Dumont, Yves. "Contributions à l'étude théorique de l'écoulement anisotrope de courbes et à l'epsilon régularisation du problème de flot à courbure moyenne". Mulhouse, 1998. http://www.theses.fr/1998MULH0510.
Pełny tekst źródłaDe, gennaro Daniele. "Flots de courbure cristalline et anisotrope, non linéaire et non local". Electronic Thesis or Diss., Université Paris sciences et lettres, 2024. http://www.theses.fr/2024UPSLD020.
Pełny tekst źródłaThis thesis is devoted to the study of geometric flows, with particular focus on the mean curvature flow. It is divided in two thematic parts. The first part, Part I, contains Chapters 2,3 and 4, and concerns convergence results for the minimizing movements scheme, which is a variational procedure extending Euler's implicit scheme to evolutions having a gradient flow-like structure. We implement this scheme for anisotropic or crystalline, nonlocal or inhomogeneous curvature flows, in linear and nonlinear instances, and study its convergence towards weak solutions to the flows. In Chapter 4 we also pair this study with a discrete-to-continuum limit. The second part, Part II, is devoted to the study of asymptotic behaviour of volume-preserving curvature flows both in the discrete- and continuus-in-time instances. The main technical tool employed is a new {L}ojasiewicz-Simon inequality suited to the study of these kind of evolutions
Schapira, Barbara. "Propriétés ergodiques du feuilletage horosphérique d'une variété à courbure négative". Phd thesis, Université d'Orléans, 2003. http://tel.archives-ouvertes.fr/tel-00163420.
Pełny tekst źródłaKirsch, Stéphane. "Courbure moyenne et interfaces". Paris 6, 2007. http://www.theses.fr/2007PA066103.
Pełny tekst źródłaJleli, Mohamed Boussaïri Pacard Franck. "Hypersurfaces à courbure moyenne constante". Créteil : Université de Paris-Val-de-Marne, 2004. http://doxa.scd.univ-paris12.fr:80/theses/th0200395.pdff.
Pełny tekst źródłaAmacha, Inas. "Flot de Yamabe avec courbure scalaire prescrite". Thesis, Brest, 2017. http://www.theses.fr/2017BRES0109/document.
Pełny tekst źródłaThis thesis is devoted to the study of a family of geometric flows associated with the prescribed scalar curvature problem. More precisely, if we denote by (M,g0) a compact riemannian manifold with dimension n≥3, and if F∈C∞ (M) is a given function, the prescribed scalar curvature problem consists of finding a conformal metric g to g0 such that F is its scalar curvature. This problem is equivalent to the resolution of the following PDE : -4 (n-1)/(n-2) ∆u+R0 u=Fu((n+2)/(n-2 )) , u>0 , (E), Where R0 is the scalar curvature of the initial metric g0 and ∆ is the laplacian associated with g0.It is a nonlinear elliptic equation, whose the main difficulty comes from the term u((n+2)/(n-2 )). Apart from the case of the standard sphere Sn all the works that study the equation (E) are based on the variational method. In this thesis, we develop another approach based on the study of a family of geometric flows which allows to solve equation (E).The flows introduced are gradient flows associated with two distinct functional functions depending on the sign of R0.The first part of this thesis is devoted to the case R0<0 and in the second part we treat the case R0>0. In both cases, our aim is to proof the global existence of the flow and study its asymptotic behavior at infinity
Laurain, Paul. "Comportement asymptotique des surfaces à courbure moyenne constante". Phd thesis, Ecole normale supérieure de lyon - ENS LYON, 2010. http://tel.archives-ouvertes.fr/tel-00559640.
Pełny tekst źródłaGrognet, Stéphane. "Le flot à courbure géodésique prescrite sur les surfaces riemaniennes". Lyon, École normale supérieure (sciences), 1994. http://www.theses.fr/1994ENSL0001.
Pełny tekst źródłaDos, Reis Gabriel. "Sur les surfaces dont la courbure moyenne est constante". Paris 7, 2001. http://www.theses.fr/2001PA077187.
Pełny tekst źródła