Gotowa bibliografia na temat „Floral developmental genetics”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Floral developmental genetics”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Floral developmental genetics"
Preston, Jill C., i Lena C. Hileman. "Developmental genetics of floral symmetry evolution". Trends in Plant Science 14, nr 3 (marzec 2009): 147–54. http://dx.doi.org/10.1016/j.tplants.2008.12.005.
Pełny tekst źródłaMohanty, Jatindra Nath, Swayamprabha Sahoo i Puspanjali Mishra. "A genetic approach to comprehend the complex and dynamic event of floral development: a review". Genomics & Informatics 20, nr 4 (31.12.2022): e40. http://dx.doi.org/10.5808/gi.21075.
Pełny tekst źródłaOlsen, Kenneth M., Andrew Womack, Ashley R. Garrett, Jane I. Suddith i Michael D. Purugganan. "Contrasting Evolutionary Forces in theArabidopsis thalianaFloral Developmental Pathway". Genetics 160, nr 4 (1.04.2002): 1641–50. http://dx.doi.org/10.1093/genetics/160.4.1641.
Pełny tekst źródłaDrews, Gary N., Detlef Weigel i Elliot M. Meyerowitz. "Floral patterning". Current Opinion in Genetics & Development 1, nr 2 (sierpień 1991): 174–78. http://dx.doi.org/10.1016/s0959-437x(05)80066-8.
Pełny tekst źródłaGoto, Koji, Junko Kyozuka i John L. Bowman. "Turning floral organs into leaves, leaves into floral organs". Current Opinion in Genetics & Development 11, nr 4 (sierpień 2001): 449–56. http://dx.doi.org/10.1016/s0959-437x(00)00216-1.
Pełny tekst źródłaGottschalk, Chris, i Steve van Nocker. "Diversity in Seasonal Bloom Time and Floral Development among Apple Species and Hybrids". Journal of the American Society for Horticultural Science 138, nr 5 (wrzesień 2013): 367–74. http://dx.doi.org/10.21273/jashs.138.5.367.
Pełny tekst źródłaZhang, Hua, Callista Ransom, Philip Ludwig i Steven van Nocker. "Genetic Analysis of Early Flowering Mutants in Arabidopsis Defines a Class of Pleiotropic Developmental Regulator Required for Expression of the Flowering-Time Switch Flowering Locus C". Genetics 164, nr 1 (1.05.2003): 347–58. http://dx.doi.org/10.1093/genetics/164.1.347.
Pełny tekst źródłaMa, Qing, Wenheng Zhang i Qiu-Yun Jenny Xiang. "Evolution and developmental genetics of floral display-A review of progress". Journal of Systematics and Evolution 55, nr 6 (19.07.2017): 487–515. http://dx.doi.org/10.1111/jse.12259.
Pełny tekst źródłaWang, Hongtao, Lifan Zhang, Peng Shen, Xuelian Liu, Rengui Zhao i Junyi Zhu. "Transcriptomic Insight into Underground Floral Differentiation in Erythronium japonicum". BioMed Research International 2022 (18.01.2022): 1–14. http://dx.doi.org/10.1155/2022/4447472.
Pełny tekst źródłaLarsson, Annika Sundås, Katarina Landberg i D. R. Meeks-Wagner. "The TERMINAL FLOWER2 (TFL2) Gene Controls the Reproductive Transition and Meristem Identity in Arabidopsis thaliana". Genetics 149, nr 2 (1.06.1998): 597–605. http://dx.doi.org/10.1093/genetics/149.2.597.
Pełny tekst źródłaRozprawy doktorskie na temat "Floral developmental genetics"
Bukhari, Ghadeer, i Wenheng Zhang. "INDEPENDENT ORIGINATION OF FLORAL ZYGOMORPHY, A PREDICTED ADAPTIVE RESPONSE TO POLLINATORS: DEVELOPMENTAL AND GENETIC MECHANISMS". VCU Scholars Compass, 2016. http://scholarscompass.vcu.edu/etd/4482.
Pełny tekst źródłaLee, Ji-Young. "Evolutionary developmental genetic studies on morphological variations : floral structures in Lepidium L. (Brassicaceae) and nectaries in eudicots /". For electronic version search Digital dissertations database. Restricted to UC campuses. Access is free to UC campus dissertations, 2002. http://uclibs.org/PID/11984.
Pełny tekst źródłaChopy, Mathilde. "Towards a better understanding of the molecular basis of floral development in Petunia x hybrida". Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEN038.
Pełny tekst źródłaWhile the master regulators of floral organ identity have been identified in multiple plantspecies, it remains poorly understood how the downstream transcriptional programs finally lead to the development of the different floral organs, and how evolutionary variations in these programs have yielded the astonishing floral architectural diversity existing in nature. The main objective of my PhD work was to start to address these fundamental questions by analysing floral development in Petunia x hybrida, chosen as model for its elaborate petal architecture combined with the availability of a powerful genetics toolkit. My research started with the identification of the petal transcriptome composition acting downstream of the homeotic genefunctions (Chapter 1). To achieve this, we used an RNAseq strategy on young flowers from a unique collection of floral homeotic mutants, complemented with wild-type samples. We finallyobtained a list of more than 400 potentially interesting genes involved in petal development. Toprovide a detailed analysis for Petunia petal development we used a reverse genetics approachand selected 95 genes expressed during petal development for functional analysis by transposonmutagenesis. I also introduced the CRISPR-Cas9 technology in the team (Chapter 3), targeting3 petal candidate genes for which no transposon insertions in their coding sequence were found. Unfortunately, we did not manage to find eye-catching defects in petal development linked tothe selected mutations. However, in the population generated for the petal reverse genetics screen we encountered a small family in which a mutation segregated causing a novel floral developmental defect strongly affecting petal and stamen development. We confirmed that this mutation was unrelated to the petal candidate gene initially targeted, and by a forward genetic approach we demonstrated that it was instead caused by a different transposon insertion in anR2R3-MYB transcription factor (Chapter 2). With the CRISPR-Cas9 technology I also targetedsome interesting genes involved in flower development like the C-class gene PMADS3. Iobtained KO mutants, and this result was part of a paper (Morel et al., 2018) and allowed a detailed description of the C-class genes function in petunia (Chapter 3). In the last part, we investigated how tube and limb development of Petunia petals depend on the cell-layer specificaction of a MADS-box transcription factor. This allowed to define the contribution of the differentcell-layers in petal development (Chapter 4). Put together, my PhD work should provide a better understanding of floral organ development and architectural diversity
Khojayori, Farahnoz N. "Floral symmetry genes elucidate the development and evolution of oil-bee pollinated flowers of Malpighiaceae and Krameriaceae". VCU Scholars Compass, 2018. https://scholarscompass.vcu.edu/etd/5585.
Pełny tekst źródłaYendrek, Craig R. "A reverse genetics approach to investigate the role of CRY1 and CRY2 in mediating floral initiation in the long day plant nicotiana sylvestries and the short day plant N. tabacum CV. Maryland Mammoth". The Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=osu1155657216.
Pełny tekst źródłaGrandi, V. "FUNCTIONAL ANALYSIS OF TRANSCRIPTION FACTORS INVOLVED IN REPRODUCTIVE MERISTEM IDENTITY IN ARABIDOPSIS THALIANA". Doctoral thesis, Università degli Studi di Milano, 2011. http://hdl.handle.net/2434/150562.
Pełny tekst źródła"Spatial and temporal patterns of population genetic diversity in the fynbos plant, Leucadendron salignum, in the Cape Floral Region of South Africa". Doctoral diss., 2013. http://hdl.handle.net/2286/R.I.17925.
Pełny tekst źródłaDissertation/Thesis
Ph.D. Biology 2013
Khanday, Imtiyaz. "Target Genes and Pathways Regulated by OsMADSI during Rice Floret Specification and Development". Thesis, 2013. http://etd.iisc.ernet.in/2005/3395.
Pełny tekst źródłaYadav, Shri Ram. "Functions For OsMADS2 And OsMADS1 As Master Regulators Of Gene Expression During Rice Floret Meristem Specification And Organ Development". Thesis, 2009. http://etd.iisc.ernet.in/handle/2005/2030.
Pełny tekst źródłaGoel, Shipra. "Studies on Molecular Targets and Pathways Regulated by Rice RFL for Flowering Transition and Panicle Development". Thesis, 2016. http://hdl.handle.net/2005/2826.
Pełny tekst źródłaKsiążki na temat "Floral developmental genetics"
Molecular Genetics of Floral Transition and Flower Development. Elsevier Science & Technology Books, 2014.
Znajdź pełny tekst źródłaFornara, Fabio. Molecular Genetics of Floral Transition and Flower Development. Elsevier Science & Technology Books, 2014.
Znajdź pełny tekst źródłaThe Molecular Genetics of Floral Transition and Flower Development. Elsevier, 2014. http://dx.doi.org/10.1016/c2012-0-07365-6.
Pełny tekst źródłaCzęści książek na temat "Floral developmental genetics"
Trull, Melanie C., i Russell L. Malmberg. "Genetic control of floral development in selected species". W Advances in Cellular and Molecular Biology of Plants, 266–84. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-017-1669-7_13.
Pełny tekst źródłaMohapatra, Pravat K., i Binod Bihari Sahu. "Genetic Analyses of Floral Development on Rice Panicle". W Panicle Architecture of Rice and its Relationship with Grain Filling, 97–106. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-67897-5_6.
Pełny tekst źródłaMonfared, Mona M., i Jennifer C. Fletcher. "Genetic and Phenotypic Analysis of Shoot Apical and Floral Meristem Development". W Methods in Molecular Biology, 157–89. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-9408-9_7.
Pełny tekst źródłaMonfared, Mona M., Thai Q. Dao i Jennifer C. Fletcher. "Genetic and Phenotypic Analysis of Shoot Apical and Floral Meristem Development". W Methods in Molecular Biology, 163–98. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3299-4_7.
Pełny tekst źródłaRijpkema, Anneke, Tom Gerats i Michiel Vandenbussche. "Genetics of Floral Development in Petunia". W Developmental Genetics of the Flower, 237–78. Elsevier, 2006. http://dx.doi.org/10.1016/s0065-2296(06)44006-4.
Pełny tekst źródłaTeeri, Teemu H., Mika Kotilainen, Anne Uimari, Satu Ruokolainen, Yan Peng Ng, Ursula Malm, Eija Pöllänen i in. "Floral Developmental Genetics of Gerbera (Asteraceae)". W Developmental Genetics of the Flower, 323–51. Elsevier, 2006. http://dx.doi.org/10.1016/s0065-2296(06)44008-8.
Pełny tekst źródłaEndress, Peter K. "Angiosperm Floral Evolution: Morphological Developmental Framework". W Developmental Genetics of the Flower, 1–61. Elsevier, 2006. http://dx.doi.org/10.1016/s0065-2296(06)44001-5.
Pełny tekst źródłaZahn, Laura M., Baomin Feng i Hong Ma. "Beyond the ABC‐Model: Regulation of Floral Homeotic Genes". W Developmental Genetics of the Flower, 163–207. Elsevier, 2006. http://dx.doi.org/10.1016/s0065-2296(06)44004-0.
Pełny tekst źródłaKramer, Elena M., i Elizabeth A. Zimmer. "Gene Duplication and Floral Developmental Genetics of Basal Eudicots". W Developmental Genetics of the Flower, 353–84. Elsevier, 2006. http://dx.doi.org/10.1016/s0065-2296(06)44009-x.
Pełny tekst źródłaMelzer, Rainer, Kerstin Kaufmann i Günter Theißen. "Missing Links: DNA‐Binding and Target Gene Specificity of Floral Homeotic Proteins". W Developmental Genetics of the Flower, 209–36. Elsevier, 2006. http://dx.doi.org/10.1016/s0065-2296(06)44005-2.
Pełny tekst źródłaStreszczenia konferencji na temat "Floral developmental genetics"
Lupu, Vasile Valeriu, Ingrith Miron, Nicolai Nistor, Doina Carina Voinescu, Magdalena Starcea, Ancuta Lupu i Anamaria Ciubara. "GENERAL NUTRITION PRINCIPLES FOR THE MENTAL AND PHYSICAL HEALTH OF CHILDREN". W The European Conference of Psychiatry and Mental Health "Galatia". Archiv Euromedica, 2023. http://dx.doi.org/10.35630/2022/12/psy.ro.26.
Pełny tekst źródłaRaporty organizacyjne na temat "Floral developmental genetics"
Wagner, D. Ry, Eliezer Lifschitz i Steve A. Kay. Molecular Genetic Analysis of Flowering in Arabidopsis and Tomato. United States Department of Agriculture, maj 2002. http://dx.doi.org/10.32747/2002.7585198.bard.
Pełny tekst źródłaLifschitz, Eliezer, i Elliot Meyerowitz. The Relations between Cell Division and Cell Type Specification in Floral and Vegetative Meristems of Tomato and Arabidopsis. United States Department of Agriculture, luty 1996. http://dx.doi.org/10.32747/1996.7613032.bard.
Pełny tekst źródłaGera, Abed, Abed Watad, P. Ueng, Hei-Ti Hsu, Kathryn Kamo, Peter Ueng i A. Lipsky. Genetic Transformation of Flowering Bulb Crops for Virus Resistance. United States Department of Agriculture, styczeń 2001. http://dx.doi.org/10.32747/2001.7575293.bard.
Pełny tekst źródłaEshed-Williams, Leor, i Daniel Zilberman. Genetic and cellular networks regulating cell fate at the shoot apical meristem. United States Department of Agriculture, styczeń 2014. http://dx.doi.org/10.32747/2014.7699862.bard.
Pełny tekst źródłaPerl-Treves, Rafael, Rebecca Grumet, Nurit Katzir i Jack E. Staub. Ethylene Mediated Regulation of Sex Expression in Cucumis. United States Department of Agriculture, styczeń 2005. http://dx.doi.org/10.32747/2005.7586536.bard.
Pełny tekst źródłaAbbott, Albert G., Doron Holland, Douglas Bielenberg i Gregory Reighard. Structural and Functional Genomic Approaches for Marking and Identifying Genes that Control Chilling Requirement in Apricot and Peach Trees. United States Department of Agriculture, wrzesień 2009. http://dx.doi.org/10.32747/2009.7591742.bard.
Pełny tekst źródła