Gotowa bibliografia na temat „Flexible supercapacitors”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Flexible supercapacitors”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Flexible supercapacitors"
Ren, Zhi Meng, Jian Yu Di, Zhen Kun Lei i Rui Mao. "Fabrication and Performance Test of Flexible Supercapacitors Based on Three-Dimensional Graphene Hydrogel". Materials Science Forum 1058 (5.04.2022): 45–50. http://dx.doi.org/10.4028/p-3juu45.
Pełny tekst źródłaLi, Jing, Tongtong Xiao, Xiaoxi Yu i Mingyuan Wang. "Graphene-based composites for supercapacitors". Journal of Physics: Conference Series 2393, nr 1 (1.12.2022): 012005. http://dx.doi.org/10.1088/1742-6596/2393/1/012005.
Pełny tekst źródłaLee, Jung Bae, Jina Jang, Haoyu Zhou, Yoonjae Lee i Jung Bin In. "Densified Laser-Induced Graphene for Flexible Microsupercapacitors". Energies 13, nr 24 (13.12.2020): 6567. http://dx.doi.org/10.3390/en13246567.
Pełny tekst źródłaQin, Leiqiang, Jianxia Jiang, Quanzheng Tao, Chuanfei Wang, Ingemar Persson, Mats Fahlman, Per O. Å. Persson, Lintao Hou, Johanna Rosen i Fengling Zhang. "A flexible semitransparent photovoltaic supercapacitor based on water-processed MXene electrodes". Journal of Materials Chemistry A 8, nr 11 (2020): 5467–75. http://dx.doi.org/10.1039/d0ta00687d.
Pełny tekst źródłaTadesse, Melkie Getnet, i Jörn Felix Lübben. "Review on Hydrogel-Based Flexible Supercapacitors for Wearable Applications". Gels 9, nr 2 (26.01.2023): 106. http://dx.doi.org/10.3390/gels9020106.
Pełny tekst źródłaPour, Ghobad Behzadi, Hassan Ashourifar, Leila Fekri Aval i Shahram Solaymani. "CNTs-Supercapacitors: A Review of Electrode Nanocomposites Based on CNTs, Graphene, Metals, and Polymers". Symmetry 15, nr 6 (1.06.2023): 1179. http://dx.doi.org/10.3390/sym15061179.
Pełny tekst źródłaTadesse, Melkie Getnet, Esubalew Kasaw, Biruk Fentahun, Emil Loghin i Jörn Felix Lübben. "Banana Peel and Conductive Polymers-Based Flexible Supercapacitors for Energy Harvesting and Storage". Energies 15, nr 7 (28.03.2022): 2471. http://dx.doi.org/10.3390/en15072471.
Pełny tekst źródłaShi, Shan, Chengjun Xu, Cheng Yang, Jia Li, Hongda Du, Baohua Li i Feiyu Kang. "Flexible supercapacitors". Particuology 11, nr 4 (sierpień 2013): 371–77. http://dx.doi.org/10.1016/j.partic.2012.12.004.
Pełny tekst źródłaSembiring, Albert Willy Jonathan, i Afriyanti Sumboja. "Composite of graphene and in-situ polymerized polyaniline on carbon cloth substrate for flexible supercapacitor". Journal of Physics: Conference Series 2243, nr 1 (1.06.2022): 012105. http://dx.doi.org/10.1088/1742-6596/2243/1/012105.
Pełny tekst źródłaLu, Yang, Weixiao Wang, Yange Wang, Menglong Zhao, Jinru Lv, Yan Guo, Yingge Zhang, Rongjie Luo i Xianming Liu. "Ultralight supercapacitors utilizing waste cotton pads for wearable energy storage". Dalton Transactions 47, nr 46 (2018): 16684–95. http://dx.doi.org/10.1039/c8dt03997f.
Pełny tekst źródłaRozprawy doktorskie na temat "Flexible supercapacitors"
YANG, YONGRUI. "Flexible Supercapacitors with Novel Gel Electrolytes". University of Akron / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=akron1590682495188219.
Pełny tekst źródłaZhang, Ruirong. "A study of flexible supercapacitors : design, manufacture and testing". Thesis, Brunel University, 2016. http://bura.brunel.ac.uk/handle/2438/13426.
Pełny tekst źródłaLorenzo, Fernandez Marta. "Flexible supercapacitors utilising the multifunctional rôle of ionic liquids". Thesis, Queen's University Belfast, 2018. https://pure.qub.ac.uk/portal/en/theses/flexible-supercapacitors-utilising-the-multifunctional-role-of-ionic-liquids(8645dbf6-5a8e-4f19-ba27-bbb6adb7c7e3).html.
Pełny tekst źródłaZACCAGNINI, PIETRO. "Graphene-based supercapacitors for flexible and harsh environments application". Doctoral thesis, Politecnico di Torino, 2021. http://hdl.handle.net/11583/2875757.
Pełny tekst źródłaAreir, Milad. "Development of 3D printed flexible supercapacitors : design, manufacturing, and testing". Thesis, Brunel University, 2018. http://bura.brunel.ac.uk/handle/2438/16659.
Pełny tekst źródłaSi, Wenping. "Designing Electrochemical Energy Storage Microdevices: Li-Ion Batteries and Flexible Supercapacitors". Doctoral thesis, Universitätsbibliothek Chemnitz, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-160049.
Pełny tekst źródłaHuman beings are facing the grand energy challenge in the 21st century. Nowhere has this become more urgent than in the area of energy storage and conversion. Conventional energy is based on fossil fuels which are limited on the earth, and has caused extensive environmental pollutions. Additionally, the consumptions of energy are still increasing, especially with the rapid proliferation of vehicles and various consumer electronics like PCs and cell phones. We cannot rely on the earth’s limited legacy forever. Alternative energy resources should be developed before an energy crisis. The developments of renewable conversion energy from solar and wind are very important but these energies are often not even and continuous. Therefore, energy storage devices are of significant importance since they are the one stabilizing the converted energy. In addition, it is a disappointing fact that nowadays a smart phone, no matter of which brand, runs out of power in one day, and users have to carry an extra mobile power pack. Portable electronics demands urgently high-performance energy storage devices with higher energy density. The first part of this work involves lithium-ion micro-batteries utilizing single silicon rolled-up tubes as anodes, which are fabricated by the rolled-up nanotechnology approach. A lab-on-chip electrochemical device platform is presented for probing the electrochemical kinetics, electrical properties and lithium-driven structural changes of a single silicon rolled-up tube as an anode in lithium ion batteries. The second part introduces the new design and fabrication of on chip, all solid-state and flexible micro-supercapacitors based on MnOx/Au multilayers, which are compatible with current microelectronics. The micro-supercapacitor exhibits a maximum energy density of 1.75 mW h cm-3 and a maximum power density of 3.44 W cm-3. Furthermore, a flexible and weavable fiber-like supercapacitor is also demonstrated using Cu wire as substrate. This dissertation was written based on the research project supported by the International Research Training Group (IRTG) GRK 1215 "Rolled-up nanotech for on-chip energy storage" from the year 2010 to 2013 and PAKT project "Electrochemical energy storage in autonomous systems, no. 49004401" from 2013 to 2014. The aim of the projects was to design advanced energy storage materials for next-generation rechargeable batteries and flexible supercapacitors in order to address the energy issue. Here, I am deeply indebted to IRTG for giving me an opportunity to carry out the research project in Germany. September 2014, IFW Dresden, Germany Wenping Si
Zhang, Panpan, Faxing Wang, Sheng Yang, Gang Wang, Minghao Yu i Xinliang Feng. "Flexible in-plane micro-supercapacitors: Progresses and challenges in fabrication and applications". Elsevier, 2020. https://tud.qucosa.de/id/qucosa%3A74431.
Pełny tekst źródłaWu, Zhenkun. "Metal-reduced graphene oxide for supercapacitors and alternating current line-filters". Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/53941.
Pełny tekst źródłaZhang, Panpan, Feng Zhu, Faxing Wang, Jinhui Wang, Renhao Dong, Xiaodong Zhuang, Oliver G. Schmidt i Xinliang Feng. "Stimulus-Responsive Micro-Supercapacitors with Ultrahigh Energy Density and Reversible Electrochromic Window". Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2018. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-235489.
Pełny tekst źródłaLi, Hongyan, Yang Hou, Faxing Wang, Martin R. Lohe, Xiaodong Zhuang, Li Niu i Xinliang Feng. "Flexible All-Solid-State Supercapacitors with High Volumetric Capacitances Boosted by Solution Processable MXene and Electrochemically Exfoliated Graphene". Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2018. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-235446.
Pełny tekst źródłaKsiążki na temat "Flexible supercapacitors"
Hu, Yating. Carbon and Metal Oxides Based Nanomaterials for Flexible High Performance Asymmetric Supercapacitors. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8342-6.
Pełny tekst źródłaLuchinin, Viktor, i Sergey Il'in. Biointerface. Conformal nanoenergy. ru: INFRA-M Academic Publishing LLC., 2023. http://dx.doi.org/10.12737/2049717.
Pełny tekst źródłaShen, Guozhen, Zheng Lou i Di Chen, red. Flexible Supercapacitors. Wiley, 2022. http://dx.doi.org/10.1002/9781119506188.
Pełny tekst źródłaChen, Di, Guozhen Shen i Zheng Lou. Flexible Supercapacitors: Materials and Applications. Wiley & Sons, Incorporated, John, 2022.
Znajdź pełny tekst źródłaChen, Di, Guozhen Shen i Zheng Lou. Flexible Supercapacitors: Fundamentals and Applications. Wiley & Sons, Incorporated, John, 2022.
Znajdź pełny tekst źródłaChen, Di, Guozhen Shen i Zheng Lou. Flexible Supercapacitors: Materials and Applications. Wiley & Sons, Limited, John, 2022.
Znajdź pełny tekst źródłaChen, Di, Guozhen Shen i Zheng Lou. Flexible Supercapacitors: Fundamentals and Applications. Wiley & Sons, Incorporated, John, 2022.
Znajdź pełny tekst źródłaHu, Yating. Carbon and Metal Oxides Based Nanomaterials for Flexible High Performance Asymmetric Supercapacitors. Springer, 2019.
Znajdź pełny tekst źródłaHu, Yating. Carbon and Metal Oxides Based Nanomaterials for Flexible High Performance Asymmetric Supercapacitors. Springer, 2018.
Znajdź pełny tekst źródłaInamuddin, Mohd Imran Ahamed, Rajender Boddula i Tariq Altalhi, red. Flexible Supercapacitor Nanoarchitectonics. Wiley, 2021. http://dx.doi.org/10.1002/9781119711469.
Pełny tekst źródłaCzęści książek na temat "Flexible supercapacitors"
Guemiza, Hazar, Thuan-Nguyen Pham-Truong, Cédric Plesse, Frédéric Vidal i Pierre-Henri Aubert. "Flexible Supercapacitors". W Nanostructured Materials for Supercapacitors, 579–617. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-99302-3_26.
Pełny tekst źródłaBendi, Ramaraju, Vipin Kumar i Pooi See Lee. "Flexible supercapacitors". W Nanomaterials for Supercapacitors, 422–47. Boca Raton, FL : CRC Press, Taylor & Francis Group, [2017] | "A Science Publishers book.": CRC Press, 2017. http://dx.doi.org/10.1201/9781315153025-6.
Pełny tekst źródłaGopi, Praveena Malliyil, Kala Moolepparambil Sukumaran i Essack Mohammed Mohammed. "Flexible and Stretchable Supercapacitors". W Polymer Nanocomposites in Supercapacitors, 77–96. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003174646-5.
Pełny tekst źródłaAltin, Yasin, i Ayse Bedeloglu. "Textile-Based Flexible Supercapacitors". W Smart and Flexible Energy Devices, 519–37. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003186755-28.
Pełny tekst źródłaKumar, Sunil, i Rashmi Madhuri. "Carbon-Based Electrodes for Flexible Supercapacitors Beyond Graphene". W Flexible Supercapacitor Nanoarchitectonics, 177–210. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2021. http://dx.doi.org/10.1002/9781119711469.ch7.
Pełny tekst źródłaLiu, Yuqing, Chen Zhao, Shayan Seyedin, Joselito Razal i Jun Chen. "Flexible All-Solid-State Supercapacitors and Micro-Pattern Supercapacitors". W Flexible Energy Conversion and Storage Devices, 1–36. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527342631.ch1.
Pełny tekst źródłaKumar, Anuj, Felipe De Souza, Ali Panhwar i Ram K. Gupta. "Recent Development in Flexible Supercapacitors". W Nanostructured Materials for Supercapacitors, 553–77. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-99302-3_25.
Pełny tekst źródłaNi, Wei, i Ling-Ying Shi. "2D Materials for Flexible Supercapacitors". W Smart and Flexible Energy Devices, 441–59. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003186755-24.
Pełny tekst źródłaCheng, Fang, Xiaoping Yang, Wen Lu i Liming Dai. "Flexible Supercapacitors Based on Nanocomposites". W Smart and Flexible Energy Devices, 551–73. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003186755-30.
Pełny tekst źródłaKumar, Anuj, i Ram K. Gupta. "Carbon-Based Advanced Flexible Supercapacitors". W Smart and Flexible Energy Devices, 417–40. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003186755-23.
Pełny tekst źródłaStreszczenia konferencji na temat "Flexible supercapacitors"
Mehta, Siddhi, Swarn Jha, Weston Stewart i Hong Liang. "Microwave Synthesis of Plant-Based Supercapacitor Electrodes for Flexible Electronics". W ASME 2021 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/imece2021-70062.
Pełny tekst źródłaLian, Keryn, Haoran Wu, Matthew Genovese, Alvin Virya, Jak Li i Kevin Ton. "Sustainable Materials for Solid Flexible Supercapacitors". W 2018 International Flexible Electronics Technology Conference (IFETC). IEEE, 2018. http://dx.doi.org/10.1109/ifetc.2018.8583951.
Pełny tekst źródłaThekkekara, Litty V., Ling Qiu, Dan Li i Min Gu. "Flexible laser scribed biomimetic supercapacitors". W Frontiers in Optics. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/fio.2016.ftu5b.5.
Pełny tekst źródłaKraft, T. M., M. Kujala, A. Railanmaa, S. Lehtimaki, T. Kololuoma, J. Keskinen, D. Lupo i M. Mantvsalo. "Highly Flexible Environmentally friendly Printed Supercapacitors". W 2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO). IEEE, 2018. http://dx.doi.org/10.1109/nano.2018.8626290.
Pełny tekst źródłaGan, Hiong Yap, Cheng Hwee Chua, Soon Mei Chan i Boon Keng Lok. "Performance characterization of flexible printed supercapacitors". W 2009 11th Electronics Packaging Technology Conference (EPTC). IEEE, 2009. http://dx.doi.org/10.1109/eptc.2009.5416532.
Pełny tekst źródłaPullanchiyodan, Abhilash, Libu Manjakkal i Ravinder Dahiya. "Metal Coated Fabric Based Supercapacitors". W 2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS). IEEE, 2020. http://dx.doi.org/10.1109/fleps49123.2020.9239537.
Pełny tekst źródłaMai, Wenjie. "Developing MnO2-based high-performance flexible supercapacitors". W Photonics for Energy. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/pfe.2015.pt4b.2.
Pełny tekst źródłaPark, Ho Seok. "High Temperature Flexible Supercapacitors Using Graphene Electrodes". W Nano-Micro Conference 2017. London: Nature Research Society, 2017. http://dx.doi.org/10.11605/cp.nmc2017.01032.
Pełny tekst źródłaLe, L. T., M. H. Ervin, H. Qiu, B. E. Fuchs, J. Zunino i W. Y. Lee. "Inkjet-printed graphene for flexible micro-supercapacitors". W 2011 IEEE 11th International Conference on Nanotechnology (IEEE-NANO). IEEE, 2011. http://dx.doi.org/10.1109/nano.2011.6144432.
Pełny tekst źródłaKoripally, Nandu, Lulu Yao, Naresh Eedugurala, Jason D. Azoulay i Tse Nga Ng. "Electro-Polymerization Process with Double-Sided Electrodes for Supercapacitors". W 2023 IEEE International Flexible Electronics Technology Conference (IFETC). IEEE, 2023. http://dx.doi.org/10.1109/ifetc57334.2023.10254823.
Pełny tekst źródłaRaporty organizacyjne na temat "Flexible supercapacitors"
Anton, Christopher M., i Matthew H. Ervin. Carbon Nanotube Based Flexible Supercapacitors. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 2011. http://dx.doi.org/10.21236/ada543112.
Pełny tekst źródła