Gotowa bibliografia na temat „Flexible Medical Instruments”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Flexible Medical Instruments”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Flexible Medical Instruments"
De Greef, Aline, Pierre Lambert i Alain Delchambre. "Towards flexible medical instruments: Review of flexible fluidic actuators". Precision Engineering 33, nr 4 (październik 2009): 311–21. http://dx.doi.org/10.1016/j.precisioneng.2008.10.004.
Pełny tekst źródłaHe, Chaojiang, Yanlin He, Changxin Yu, Fei Luo i Lianqing Zhu. "Optical fiber shape sensing of flexible medical instruments with temperature compensation". Optical Fiber Technology 74 (grudzień 2022): 103123. http://dx.doi.org/10.1016/j.yofte.2022.103123.
Pełny tekst źródłaSweigert, Patrick, Adam Van Huis, Eric Marcotte i Bipan Chand. "Flexible Endoscopy: The Fundamentals". Digestive Disease Interventions 02, nr 04 (grudzień 2018): 289–98. http://dx.doi.org/10.1055/s-0038-1675754.
Pełny tekst źródłaCheng, Zhuo-Qi, Jiale He, Liang Zhou, Yu Li, Pengjie Lin, Jing Guo, Shuting Cai i Xiaoming Xiong. "Smart handheld device with flexible wrist and electrical bioimpedance sensor for tissue inspection". Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 236, nr 3 (1.12.2021): 416–26. http://dx.doi.org/10.1177/09544119211060100.
Pełny tekst źródłaOkayasu, Haruna, Jun Okamoto, Hiroshi Iseki i Masakatsu G. Fujie. "Development of a Hydraulically-Driven Flexible Manipulator for Neurosurgery". Journal of Robotics and Mechatronics 17, nr 2 (20.04.2005): 149–57. http://dx.doi.org/10.20965/jrm.2005.p0149.
Pełny tekst źródłaMcIntosh, Roger L., i Alfred Yau. "A Flexible and Robust Peer-to-Peer Architecture with XML-Based Open Communication for Laboratory Automation". JALA: Journal of the Association for Laboratory Automation 8, nr 1 (luty 2003): 38–45. http://dx.doi.org/10.1016/s1535-5535-04-00240-0.
Pełny tekst źródłaCaceres, Adrian. "Neuroendoscopy - Surgical instruments". Archives of Pediatric Neurosurgery 3, nr 1(January-April) (31.01.2021): e732021. http://dx.doi.org/10.46900/apn.v3i1(january-april).73.
Pełny tekst źródłaKhan, Fouzia, Abdulhamit Donder, Stefano Galvan, Ferdinando Rodriguez y. Baena i Sarthak Misra. "Pose Measurement of Flexible Medical Instruments Using Fiber Bragg Gratings in Multi-Core Fiber". IEEE Sensors Journal 20, nr 18 (15.09.2020): 10955–62. http://dx.doi.org/10.1109/jsen.2020.2993452.
Pełny tekst źródłaKhan, Fouzia, Alper Denasi, David Barrera, Javier Madrigal, Salvador Sales i Sarthak Misra. "Multi-Core Optical Fibers With Bragg Gratings as Shape Sensor for Flexible Medical Instruments". IEEE Sensors Journal 19, nr 14 (15.07.2019): 5878–84. http://dx.doi.org/10.1109/jsen.2019.2905010.
Pełny tekst źródłaSudarevic, Boban, Joel Troya, Karl-Hermann Fuchs, Alexander Hann, Andras Vereczkei i Alexander Meining. "Design and Development of a Flexible 3D-Printed Endoscopic Grasping Instrument". Applied Sciences 13, nr 9 (4.05.2023): 5656. http://dx.doi.org/10.3390/app13095656.
Pełny tekst źródłaRozprawy doktorskie na temat "Flexible Medical Instruments"
De, Greef Aline. "Towards medical flexible instruments: a contribution to the study of flexible fluidic actuators". Doctoral thesis, Universite Libre de Bruxelles, 2010. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210073.
Pełny tekst źródła• A literature review of these actuators has been established. It has allowed to identify the different types of motion that these actuators can develop as well as the design principles underlying. This review can help to develop flexible instruments based on flexible fluidic actuators.
• A test bench has been developed to characterize the flexible fluidic actuators.
• A interesting measuring concept has been implemented and experimentally validated on a specific flexible fluidic actuator (the "Pneumatic Balloon Actuator", PBA). Ac- cording to this principle, the measurements of the pressure and of the volume of fluid supplied to the actuator allow to determine the displacement of the actuator and the force it develops. This means being able to determine the displacement of a flexible fluidic actuator and the force it develops without using a displacement sensor or a force sensor. This principle is interesting for medical applications inside the human body, for which measuring the force applied by the organs to the surgical tools remains a problem.
The study of this principle paves the way for a lot of future works such as the implemen- tation and the testing of this principle on more complex structures or in a control loop in order to control the displacement of the actuator (or the force it develops) without using a displacement or a force sensor.
• A 2D-model of the PBA has been established and has helped to better understand the physics underlying the behaviour of this actuator.
• A miniaturization work has been performed on a particular kind of flexible fluidic actu- ator: the Pleated Pneumatic Artificial Muscle (PPAM). This miniaturization study has been made on this type of actuator because, according to theoretical models, minia- turized PPAMs, whose dimensions are small enough to be inserted into MIS medical instruments, could be able to develop the forces required to allow the instruments to perform most surgical actions. The achieved miniaturized muscles have a design similar to that of the third generation PPAMs developed at the VUB and present a total length of about 90 mm and an outer diameter at rest of about 15 mm. One of the developed miniaturized PPAMs has been pressurized at p = 1 bar and it was able to develop a pulling force F = 100 N while producing a contraction of 4 %.
Propositions have been made regarding a further miniaturization of the muscles.
Doctorat en Sciences de l'ingénieur
info:eu-repo/semantics/nonPublished
Cabras, Paolo. "3D Pose estimation of continuously deformable instruments in robotic endoscopic surgery". Thesis, Strasbourg, 2016. http://www.theses.fr/2016STRAD007/document.
Pełny tekst źródłaKnowing the 3D position of robotized instruments can be useful in surgical context for e.g. their automatic control or gesture guidance. We propose two methods to infer the 3D pose of a single bending section instrument equipped with colored markers using only the images provided by the monocular camera embedded in the endoscope. A graph-based method is used to segment the markers. Their corners are extracted by detecting color transitions along Bézier curves fitted on edge points. These features are used to estimate the 3D pose of the instrument using an adaptive model that takes into account the mechanical plays of the system. Since this method can be affected by model uncertainties, the image-to-3d function can be learned according to a training set. We opted for two techniques that have been improved : Radial Basis Function Network with Gaussian kernel and Locally Weighted Projection. The proposed methods are validated on a robotic experimental cell and in in-vivo sequences
Elloian, Jeffrey. "Design of a Flexible Ultrasound Phased Array with Adaptive Phasing for Curvature". Thesis, 2021. https://doi.org/10.7916/d8-d1kz-kq89.
Pełny tekst źródłaSaurabh, Kumar. "Force and Shape Estimation using Fiber Bragg Grating Sensors for Assistance in Minimally Invasive Diagnostic and Surgical Procedures". Thesis, 2017. https://etd.iisc.ac.in/handle/2005/4652.
Pełny tekst źródłaKsiążki na temat "Flexible Medical Instruments"
Great Britain: Department of Health. Decontamination of Flexible Endoscopes : Part e: Testing Methods. Stationery Office, The, 2016.
Znajdź pełny tekst źródłaGreat Britain: Department of Health. Decontamination of Flexible Endoscopes : Part C: Operational Management. Stationery Office, The, 2016.
Znajdź pełny tekst źródłaGreat Britain: Department of Health. Decontamination of Flexible Endoscopes : Part a: Policy and Management. Stationery Office, The, 2016.
Znajdź pełny tekst źródłaGreat Britain: Department of Health. Decontamination of Flexible Endoscopes : Part d: Validation and Verification. Stationery Office, The, 2016.
Znajdź pełny tekst źródłaGreat Britain: Department of Health. Decontamination of Flexible Endoscopes : Part B: Design and Installation. Stationery Office, The, 2016.
Znajdź pełny tekst źródłaCzęści książek na temat "Flexible Medical Instruments"
Kukuk, Markus, i Bernhard Geiger. "A Real-Time Deformable Model for Flexible Instruments Inserted into Tubular Structures". W Medical Image Computing and Computer-Assisted Intervention — MICCAI 2002, 331–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45787-9_42.
Pełny tekst źródłaMarshall, Jane. "Alcohol-related dementia (alcohol-induced dementia; alcohol-related brain damage)". W New Oxford Textbook of Psychiatry, 399–402. Oxford University Press, 2012. http://dx.doi.org/10.1093/med/9780199696758.003.0051.
Pełny tekst źródłaGarg, Rama. "Ureteric Injury in Gynecology Surgery". W Urinary Tract Infection and Nephropathy - Insights into Potential Relationship [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.99649.
Pełny tekst źródłaTsika, Noah. "Solemn Venues". W Traumatic Imprints, 48–81. University of California Press, 2018. http://dx.doi.org/10.1525/california/9780520297630.003.0003.
Pełny tekst źródłaPazmiño, Pablo. "Foraminoplasty". W Advances in Spine Surgery [Working Title]. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.1001457.
Pełny tekst źródłaStreszczenia konferencji na temat "Flexible Medical Instruments"
O’Brien, Kevin, Zachary R. Boyer, Benjamin G. Mart, Cory T. Brolliar, Thomas L. Carroll i Loris Fichera. "Towards Flexible Steerable Instruments for Office-Based Laryngeal Surgery". W 2019 Design of Medical Devices Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/dmd2019-3309.
Pełny tekst źródłaMimoun, B., A. van der Horst, R. Dekker, D. van der Voort, A. van der Horst, M. Rutten, F. van de Vosse i R. Dekker. "Thermal flow sensors on flexible substrates for minimally invasive medical instruments". W 2012 IEEE Sensors. IEEE, 2012. http://dx.doi.org/10.1109/icsens.2012.6411429.
Pełny tekst źródłaFloris, Ignazio, Javier Madrigal, Salvador Sales, Pedro A. Calderón i Jose M. Adam. "Twisting compensation of optical multicore fiber shape sensors for flexible medical instruments". W Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XX, redaktor Israel Gannot. SPIE, 2020. http://dx.doi.org/10.1117/12.2543783.
Pełny tekst źródłaShi, Jialei, i Helge Wurdemann. "Design and Control of a Tele-operated Soft Instrument in Minimally Invasive Surgery". W THE HAMLYN SYMPOSIUM ON MEDICAL ROBOTICS. The Hamlyn Centre, Imperial College London London, UK, 2023. http://dx.doi.org/10.31256/hsmr2023.16.
Pełny tekst źródłaPorto, Rafael Aleluia, Florent Nageotte, Philippe Zanne i Michel de Mathelin. "Position control of medical cable-driven flexible instruments by combining machine learning and kinematic analysis". W 2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019. http://dx.doi.org/10.1109/icra.2019.8793692.
Pełny tekst źródłaKatoch, Rohan, Boao Xia, Yoshinori Yamakawa, Jun Ueda i Hiroshi Honda. "Design and Analysis of a Symmetric Articulated Single-Port Laparoscopic Surgical Device". W 2017 Design of Medical Devices Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/dmd2017-3441.
Pełny tekst źródłaCheung, L. W., K. C. Lau, Flora F. Leung, Donald N. F. Ip, Henry G. H. Chow, Philip W. Y. Chiu i Y. Yam. "Distal Joint Rotation Mechanism for Endoscopic Robot Manipulation". W The Hamlyn Symposium on Medical Robotics: "MedTech Reimagined". The Hamlyn Centre, Imperial College London London, UK, 2022. http://dx.doi.org/10.31256/hsmr2022.74.
Pełny tekst źródłaRoppenecker, Daniel B., Mattias F. Traeger, Jan D. J. Gumprecht i Tim C. Lueth. "How to Design and Create a Cardan Shaft for a Single Port Robot by Selective Laser Sintering". W ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-87654.
Pełny tekst źródłaLeavitt, Alexandra, Ryan Lam, Nichols Crawford Taylor, Daniel S. Drew i Alan Kuntz. "Toward a Millimeter-Scale Tendon-Driven Continuum Wrist with Integrated Gripper for Microsurgical Applications". W THE HAMLYN SYMPOSIUM ON MEDICAL ROBOTICS. The Hamlyn Centre, Imperial College London London, UK, 2023. http://dx.doi.org/10.31256/hsmr2023.31.
Pełny tekst źródłaLam, Chun Ping, Ming Ho Ho, Shi Pan Siu, Ka Chun Lau, Yeung Yam i Philip Wai Yan Chiu. "Implementation of a Novel Handheld Endoscopic Operation Platform (EndoGRASP)". W THE HAMLYN SYMPOSIUM ON MEDICAL ROBOTICS. The Hamlyn Centre, Imperial College London London, UK, 2023. http://dx.doi.org/10.31256/hsmr2023.20.
Pełny tekst źródła