Artykuły w czasopismach na temat „Flexible conductive fibers”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Flexible conductive fibers”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Li, Yi, Jun Chen, Xiao Han, Yinghui Li, Ziqiang Zhang i Yanwen Ma. "Capillarity-Driven Self-Assembly of Silver Nanowires-Coated Fibers for Flexible and Stretchable Conductor". Nano 13, nr 12 (grudzień 2018): 1850146. http://dx.doi.org/10.1142/s1793292018501461.
Pełny tekst źródłaPodsiadły, Bartłomiej, Piotr Walter, Michał Kamiński, Andrzej Skalski i Marcin Słoma. "Electrically Conductive Nanocomposite Fibers for Flexible and Structural Electronics". Applied Sciences 12, nr 3 (18.01.2022): 941. http://dx.doi.org/10.3390/app12030941.
Pełny tekst źródłaXue, P., Xiao Ming Tao i Keun Hoo Park. "Electrically Conductive Fibers/Yarns with Sensing Behavior from PVA and Carbon Black". Key Engineering Materials 462-463 (styczeń 2011): 18–23. http://dx.doi.org/10.4028/www.scientific.net/kem.462-463.18.
Pełny tekst źródłaPing, Bingyi, Zihang Zhang, Qiushi Liu, Minghao Li, Qingxiu Yang i Rui Guo. "Liquid Metal Fibers with a Knitted Structure for Wearable Electronics". Biosensors 13, nr 7 (7.07.2023): 715. http://dx.doi.org/10.3390/bios13070715.
Pełny tekst źródłaJiang, Yanke, Meng Xu i Vamsi K. Yadavalli. "Silk Fibroin-Sheathed Conducting Polymer Wires as Organic Connectors for Biosensors". Biosensors 9, nr 3 (28.08.2019): 103. http://dx.doi.org/10.3390/bios9030103.
Pełny tekst źródłaJang, Jina, Haoyu Zhou, Jungbae Lee, Hakgae Kim i Jung Bin In. "Heat Scanning for the Fabrication of Conductive Fibers". Polymers 13, nr 9 (26.04.2021): 1405. http://dx.doi.org/10.3390/polym13091405.
Pełny tekst źródłaKarahan Toprakçı, Hatice Aylin, Mukaddes Şeval Çetin i Ozan Toprakçı. "Fabrication of Conductive Polymer Composites from Turkish Hemp-Derived Carbon Fibers and Thermoplastic Elastomers". Tekstil ve Mühendis 28, nr 121 (31.03.2021): 32–38. http://dx.doi.org/10.7216/1300759920212812104.
Pełny tekst źródłaXie, Juan, Menghe Miao i Yongtang Jia. "Mechanism of Electrical Conductivity in Metallic Fiber-Based Yarns". Autex Research Journal 20, nr 1 (1.03.2020): 63–68. http://dx.doi.org/10.2478/aut-2019-0008.
Pełny tekst źródłaWu, Yu, Sihao Zhou, Jie Yi, Dongsheng Wang i Wen Wu. "Facile fabrication of flexible alginate/polyaniline/graphene hydrogel fibers for strain sensor". Journal of Engineered Fibers and Fabrics 17 (styczeń 2022): 155892502211146. http://dx.doi.org/10.1177/15589250221114641.
Pełny tekst źródłaLiu, Wangcheng, Jinwen Zhang i Hang Liu. "Conductive Bicomponent Fibers Containing Polyaniline Produced via Side-by-Side Electrospinning". Polymers 11, nr 6 (1.06.2019): 954. http://dx.doi.org/10.3390/polym11060954.
Pełny tekst źródłaHuang, Fei, Jiyong Hu i Xiong Yan. "Review of Fiber- or Yarn-Based Wearable Resistive Strain Sensors: Structural Design, Fabrication Technologies and Applications". Textiles 2, nr 1 (8.02.2022): 81–111. http://dx.doi.org/10.3390/textiles2010005.
Pełny tekst źródłaLi, Yan, Hongwei Hu, Teddy Salim, Guanggui Cheng, Yeng Ming Lam i Jianning Ding. "Flexible Wet-Spun PEDOT:PSS Microfibers Integrating Thermal-Sensing and Joule Heating Functions for Smart Textiles". Polymers 15, nr 16 (17.08.2023): 3432. http://dx.doi.org/10.3390/polym15163432.
Pełny tekst źródłaLiu, Xin, Zong Yi Qin, Xiao Lin Zhang, Long Chen i Mei Fang Zhu. "Conductive Polypyrrole/Polyurethane Composite Fibers for Chloroform Gas Detection". Advanced Materials Research 750-752 (sierpień 2013): 55–58. http://dx.doi.org/10.4028/www.scientific.net/amr.750-752.55.
Pełny tekst źródłaZhang, Jizhen, Shayan Seyedin, Si Qin, Zhiyu Wang, Sepehr Moradi, Fangli Yang, Peter A. Lynch i in. "Highly Conductive Ti3C2TxMXene Hybrid Fibers for Flexible and Elastic Fiber-Shaped Supercapacitors". Small 15, nr 8 (17.01.2019): 1804732. http://dx.doi.org/10.1002/smll.201804732.
Pełny tekst źródłaTong, Yu-Long, Bin Xu, Xia-Fang Du, Heng-Yang Cheng, Cai-Feng Wang, Guan Wu i Su Chen. "Microfluidic-Spinning-Directed Conductive Fibers toward Flexible Micro-Supercapacitors". Macromolecular Materials and Engineering 303, nr 6 (15.04.2018): 1700664. http://dx.doi.org/10.1002/mame.201700664.
Pełny tekst źródłaHong, Taekuk, Sang-Mi Jeong, Yong Kyu Choi, Taekyung Lim i Sanghyun Ju. "Superhydrophobic, Elastic, and Conducting Polyurethane-Carbon Nanotube–Silane–Aerogel Composite Microfiber". Polymers 12, nr 8 (7.08.2020): 1772. http://dx.doi.org/10.3390/polym12081772.
Pełny tekst źródłaChatterjee, Kony, Jordan Tabor i Tushar K. Ghosh. "Electrically Conductive Coatings for Fiber-Based E-Textiles". Fibers 7, nr 6 (1.06.2019): 51. http://dx.doi.org/10.3390/fib7060051.
Pełny tekst źródłaChen, Mingxun. "Liquid metal based smart fiber sensor for human-computer interaction". E3S Web of Conferences 213 (2020): 03015. http://dx.doi.org/10.1051/e3sconf/202021303015.
Pełny tekst źródłaZhang, Xiao Lin, Zong Yi Qin i Long Chen. "Fabrication of Conductive Polypyrrole/Polyurethane Composite Fibers for Large Strain Sensing". Advanced Materials Research 482-484 (luty 2012): 1142–45. http://dx.doi.org/10.4028/www.scientific.net/amr.482-484.1142.
Pełny tekst źródłaWei, Yong, Song Chen, Yong Lin, Xue Yuan i Lan Liu. "Silver nanowires coated on cotton for flexible pressure sensors". Journal of Materials Chemistry C 4, nr 5 (2016): 935–43. http://dx.doi.org/10.1039/c5tc03419a.
Pełny tekst źródłaMeng, Yuning, Lin Jin, Bin Cai i Zhenling Wang. "Facile fabrication of flexible core–shell graphene/conducting polymer microfibers for fibriform supercapacitors". RSC Advances 7, nr 61 (2017): 38187–92. http://dx.doi.org/10.1039/c7ra06641d.
Pełny tekst źródłaKrifa, Mourad. "Electrically Conductive Textile Materials—Application in Flexible Sensors and Antennas". Textiles 1, nr 2 (30.07.2021): 239–57. http://dx.doi.org/10.3390/textiles1020012.
Pełny tekst źródłaWu, Songmei. "Recent Progress in Flexible Graphene-Based Composite Fiber Electrodes for Supercapacitors". Crystals 11, nr 12 (30.11.2021): 1484. http://dx.doi.org/10.3390/cryst11121484.
Pełny tekst źródłaWang, Mingxu, Qiang Gao, Jiefeng Gao, Chunhong Zhu i Kunlin Chen. "Core–shell PEDOT:PSS/SA composite fibers fabricated via a single-nozzle technique enable wearable sensor applications". Journal of Materials Chemistry C 8, nr 13 (2020): 4564–71. http://dx.doi.org/10.1039/c9tc05527d.
Pełny tekst źródłaLi, Li, Chen Chen, Jing Xie, Zehuai Shao i Fuxin Yang. "The Preparation of Carbon Nanotube/MnO2Composite Fiber and Its Application to Flexible Micro-Supercapacitor". Journal of Nanomaterials 2013 (2013): 1–5. http://dx.doi.org/10.1155/2013/821071.
Pełny tekst źródłaKoenig, Kylie, Naveen Balakrishnan, Stefan Hermanns, Fabian Langensiepen i Gunnar Seide. "Biobased Dyes as Conductive Additives to Reduce the Diameter of Polylactic Acid Fibers during Melt Electrospinning". Materials 13, nr 5 (27.02.2020): 1055. http://dx.doi.org/10.3390/ma13051055.
Pełny tekst źródłaZhang, Keliang, Xudong Zhang, Wen He, Wangning Xu, Guogang Xu, Xinli Yi, Xuena Yang i Jiefang Zhu. "Rational design and kinetics study of flexible sodium-ion full batteries based on binder-free composite film electrodes". Journal of Materials Chemistry A 7, nr 16 (2019): 9890–902. http://dx.doi.org/10.1039/c9ta01026b.
Pełny tekst źródłaJiang, Zhiping, Yue Shao, Peng Zhao i Hong Wang. "Flexible heteroatom-doped graphitic hollow carbon fibers for ultrasensitive and reusable electric current sensing". Chemical Communications 55, nr 85 (2019): 12853–56. http://dx.doi.org/10.1039/c9cc06341b.
Pełny tekst źródłaChhetry, Ashok, Hyosang Yoon i Jae Yeong Park. "A flexible and highly sensitive capacitive pressure sensor based on conductive fibers with a microporous dielectric for wearable electronics". Journal of Materials Chemistry C 5, nr 38 (2017): 10068–76. http://dx.doi.org/10.1039/c7tc02926h.
Pełny tekst źródłaKong, Lushi, Guanchun Rui, Guangyu Wang, Rundong Huang, Ran Li, Jiajie Yu, Shengli Qi i Dezhen Wu. "Preparation of Palladium/Silver-Coated Polyimide Nanotubes: Flexible, Electrically Conductive Fibers". Materials 10, nr 11 (2.11.2017): 1263. http://dx.doi.org/10.3390/ma10111263.
Pełny tekst źródłaItoh, Toshihiro. "Continuous Process for Large-Area Flexible MEMS". Advances in Science and Technology 81 (wrzesień 2012): 9–14. http://dx.doi.org/10.4028/www.scientific.net/ast.81.9.
Pełny tekst źródłaZhang, Junze, Jing Liu, Zeyu Zhao, Di Huang, Chao Chen, Zhaozhu Zheng, Chenxi Fu i in. "A facile scalable conductive graphene-coated Calotropis gigantea yarn". Cellulose 29, nr 6 (1.03.2022): 3545–56. http://dx.doi.org/10.1007/s10570-022-04475-z.
Pełny tekst źródłaGoncu-Berk, Gozde. "3D Printing of Conductive Flexible Filaments for E-Textile Applications". IOP Conference Series: Materials Science and Engineering 1266, nr 1 (1.01.2023): 012001. http://dx.doi.org/10.1088/1757-899x/1266/1/012001.
Pełny tekst źródłaAgo, Mariko, Maryam Borghei, Johannes S. Haataja i Orlando J. Rojas. "Mesoporous carbon soft-templated from lignin nanofiber networks: microphase separation boosts supercapacitance in conductive electrodes". RSC Advances 6, nr 89 (2016): 85802–10. http://dx.doi.org/10.1039/c6ra17536h.
Pełny tekst źródłaLee, Hee Uk, Chulhwan Park i Jae Yeong Park. "Highly conductive and flexible chitosan based multi-wall carbon nanotube/polyurethane composite fibers". RSC Advances 6, nr 3 (2016): 2149–54. http://dx.doi.org/10.1039/c5ra23791b.
Pełny tekst źródłaProbst, Henriette, Konrad Katzer, Andreas Nocke, Rico Hickmann, Martina Zimmermann i Chokri Cherif. "Melt Spinning of Highly Stretchable, Electrically Conductive Filament Yarns". Polymers 13, nr 4 (16.02.2021): 590. http://dx.doi.org/10.3390/polym13040590.
Pełny tekst źródłaWang, Xiangdong, Xiaoyu Wang, Menghan Pi i Rong Ran. "High-strength, highly conductive and woven organic hydrogel fibers for flexible electronics". Chemical Engineering Journal 428 (styczeń 2022): 131172. http://dx.doi.org/10.1016/j.cej.2021.131172.
Pełny tekst źródłaYuan, Yanan, Yangyang Xiao, Zhixin Jia, Lingyun Li, Donglan Sun, Hongfeng Zhang, Na Tang i Xiaocong Wang. "Facile Synthesis of Flexible Hollow Conductive Polyaniline Composite Fibers from Willow Catkins". Journal of Natural Fibers 17, nr 10 (20.02.2019): 1479–87. http://dx.doi.org/10.1080/15440478.2019.1579691.
Pełny tekst źródłaKim, Young Ju, Ji Sub Hwang, Bui Xuan Khuyen, Bui Son Tung, Ki Won Kim, Joo Yull Rhee, Liang-Yao Chen i YoungPak Lee. "Flexible ultrathin metamaterial absorber for wide frequency band, based on conductive fibers". Science and Technology of Advanced Materials 19, nr 1 (15.10.2018): 711–17. http://dx.doi.org/10.1080/14686996.2018.1527170.
Pełny tekst źródłaMaillaud, Laurent, Robert J. Headrick, Vida Jamali, Julien Maillaud, Dmitri E. Tsentalovich, Wilfrid Neri, E. Amram Bengio i in. "Highly Concentrated Aqueous Dispersions of Carbon Nanotubes for Flexible and Conductive Fibers". Industrial & Engineering Chemistry Research 57, nr 10 (22.02.2018): 3554–60. http://dx.doi.org/10.1021/acs.iecr.7b03973.
Pełny tekst źródłaZhu, Chuang, Xinyi Guan, Xi Wang, Yi Li, Evelyn Chalmers i Xuqing Liu. "Mussel‐Inspired Flexible, Durable, and Conductive Fibers Manufacturing for Finger‐Monitoring Sensors". Advanced Materials Interfaces 6, nr 1 (20.11.2018): 1801547. http://dx.doi.org/10.1002/admi.201801547.
Pełny tekst źródłaLi, Jin Liang, i Li Ping Zhu. "Intelligent Quilt Based on Conductive Textile Materials, Smart Flexible Sensors, and Composite Charging Technology". Applied Mechanics and Materials 607 (lipiec 2014): 926–30. http://dx.doi.org/10.4028/www.scientific.net/amm.607.926.
Pełny tekst źródłaZhang, Luman, Xuan Zhang, Jian Wang, David Seveno, Jan Fransaer, Jean-Pierre Locquet i Jin Won Seo. "Carbon Nanotube Fibers Decorated with MnO2 for Wire-Shaped Supercapacitor". Molecules 26, nr 11 (7.06.2021): 3479. http://dx.doi.org/10.3390/molecules26113479.
Pełny tekst źródłaHe, Kun, Pu Xie, Chengkui Zu, Yanhang Wang, Baoying Li, Bin Han, Min Zhi Rong i Ming Qiu Zhang. "A facile and scalable process to synthesize flexible lithium ion conductive glass-ceramic fibers". RSC Advances 9, nr 8 (2019): 4157–61. http://dx.doi.org/10.1039/c8ra08401g.
Pełny tekst źródłaLi, Bo, Jianli Cheng, Zhuanpei Wang, Yinchuan Li, Wei Ni i Bin Wang. "Highly-wrinkled reduced graphene oxide-conductive polymer fibers for flexible fiber-shaped and interdigital-designed supercapacitors". Journal of Power Sources 376 (luty 2018): 117–24. http://dx.doi.org/10.1016/j.jpowsour.2017.11.076.
Pełny tekst źródłaRahman, Mohammad Jellur, i Tetsu Mieno. "Conductive Cotton Textile from Safely Functionalized Carbon Nanotubes". Journal of Nanomaterials 2015 (2015): 1–10. http://dx.doi.org/10.1155/2015/978484.
Pełny tekst źródłaHupfer, Maximilian Lutz, Annett Gawlik, Jan Dellith i Jonathan Plentz. "Aluminum-Doped Zinc Oxide Improved by Silver Nanowires for Flexible, Semitransparent and Conductive Electrodes on Textile with High Temperature Stability". Materials 16, nr 11 (25.05.2023): 3961. http://dx.doi.org/10.3390/ma16113961.
Pełny tekst źródłaLai, Xiaoxu, Ronghui Guo, Hongyan Xiao, Jianwu Lan, Shouxiang Jiang, Ce Cui i Wenfeng Qin. "Flexible conductive copper/reduced graphene oxide coated PBO fibers modified with poly(dopamine)". Journal of Alloys and Compounds 788 (czerwiec 2019): 1169–76. http://dx.doi.org/10.1016/j.jallcom.2019.02.296.
Pełny tekst źródłaLu, Ying, Jianwei Jiang, Sanghyuk Park, Dong Wang, Longhai Piao i Jinkwon Kim. "Wet‐Spinning Fabrication of Flexible Conductive Composite Fibers from Silver Nanowires and Fibroin". Bulletin of the Korean Chemical Society 41, nr 2 (8.01.2020): 162–69. http://dx.doi.org/10.1002/bkcs.11945.
Pełny tekst źródłaRuhunage, Chethani, Vaishnavi Dhawan, Chaminda P. Nawarathne, Abdul Hoque, Xinyan Tracy Cui i Noe T. Alvarez. "Evaluation of Polymer-Coated Carbon Nanotube Flexible Microelectrodes for Biomedical Applications". Bioengineering 10, nr 6 (26.05.2023): 647. http://dx.doi.org/10.3390/bioengineering10060647.
Pełny tekst źródła