Gotowa bibliografia na temat „Flexible conductive fibers”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Flexible conductive fibers”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Flexible conductive fibers"
Li, Yi, Jun Chen, Xiao Han, Yinghui Li, Ziqiang Zhang i Yanwen Ma. "Capillarity-Driven Self-Assembly of Silver Nanowires-Coated Fibers for Flexible and Stretchable Conductor". Nano 13, nr 12 (grudzień 2018): 1850146. http://dx.doi.org/10.1142/s1793292018501461.
Pełny tekst źródłaPodsiadły, Bartłomiej, Piotr Walter, Michał Kamiński, Andrzej Skalski i Marcin Słoma. "Electrically Conductive Nanocomposite Fibers for Flexible and Structural Electronics". Applied Sciences 12, nr 3 (18.01.2022): 941. http://dx.doi.org/10.3390/app12030941.
Pełny tekst źródłaXue, P., Xiao Ming Tao i Keun Hoo Park. "Electrically Conductive Fibers/Yarns with Sensing Behavior from PVA and Carbon Black". Key Engineering Materials 462-463 (styczeń 2011): 18–23. http://dx.doi.org/10.4028/www.scientific.net/kem.462-463.18.
Pełny tekst źródłaPing, Bingyi, Zihang Zhang, Qiushi Liu, Minghao Li, Qingxiu Yang i Rui Guo. "Liquid Metal Fibers with a Knitted Structure for Wearable Electronics". Biosensors 13, nr 7 (7.07.2023): 715. http://dx.doi.org/10.3390/bios13070715.
Pełny tekst źródłaJiang, Yanke, Meng Xu i Vamsi K. Yadavalli. "Silk Fibroin-Sheathed Conducting Polymer Wires as Organic Connectors for Biosensors". Biosensors 9, nr 3 (28.08.2019): 103. http://dx.doi.org/10.3390/bios9030103.
Pełny tekst źródłaJang, Jina, Haoyu Zhou, Jungbae Lee, Hakgae Kim i Jung Bin In. "Heat Scanning for the Fabrication of Conductive Fibers". Polymers 13, nr 9 (26.04.2021): 1405. http://dx.doi.org/10.3390/polym13091405.
Pełny tekst źródłaKarahan Toprakçı, Hatice Aylin, Mukaddes Şeval Çetin i Ozan Toprakçı. "Fabrication of Conductive Polymer Composites from Turkish Hemp-Derived Carbon Fibers and Thermoplastic Elastomers". Tekstil ve Mühendis 28, nr 121 (31.03.2021): 32–38. http://dx.doi.org/10.7216/1300759920212812104.
Pełny tekst źródłaXie, Juan, Menghe Miao i Yongtang Jia. "Mechanism of Electrical Conductivity in Metallic Fiber-Based Yarns". Autex Research Journal 20, nr 1 (1.03.2020): 63–68. http://dx.doi.org/10.2478/aut-2019-0008.
Pełny tekst źródłaWu, Yu, Sihao Zhou, Jie Yi, Dongsheng Wang i Wen Wu. "Facile fabrication of flexible alginate/polyaniline/graphene hydrogel fibers for strain sensor". Journal of Engineered Fibers and Fabrics 17 (styczeń 2022): 155892502211146. http://dx.doi.org/10.1177/15589250221114641.
Pełny tekst źródłaLiu, Wangcheng, Jinwen Zhang i Hang Liu. "Conductive Bicomponent Fibers Containing Polyaniline Produced via Side-by-Side Electrospinning". Polymers 11, nr 6 (1.06.2019): 954. http://dx.doi.org/10.3390/polym11060954.
Pełny tekst źródłaRozprawy doktorskie na temat "Flexible conductive fibers"
Zhao, Wei. "Flexible Transparent Electrically Conductive Polymer Films for Future Electronics". University of Akron / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=akron1297888558.
Pełny tekst źródłaMontibon, Elson. "Modification of Paper into Conductive Substrate for Electronic Functions : Deposition, Characterization and Demonstration". Doctoral thesis, Karlstads universitet, Avdelningen för kemiteknik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-7352.
Pełny tekst źródłaFel ordningsnummer (2010:28) är angivet på omslaget av fulltextfilen.
Printed Polymer Electronics on Paper
Lima, Ana Luísa Delgado. "Novel photo/conductive organic fibers for flexible optoelectronics". Doctoral thesis, 2016. http://hdl.handle.net/1822/45262.
Pełny tekst źródłaThe continuous technological evolution that is moving toward the manufacture of smaller and more efficient devices allied with the growing environmental awareness concerning plastic materials has challenging researchers to develop new materials that could fulfill both premises. Optic/electronic materials are in constant evolution and are an example of a demanding field of research that could be found in most of now-a-day applications, from LEDs in cars and in housing light, batteries and antistatics, among others. Between the several strategies to obtain materials with optic/electronic properties and taking into account all the environmental concerns. The development of composites or nanocomposites combining biodegradable polymers and environmental friendly processing techniques is an alternative. The final optical and/or electronic properties are provided by the introduction of functional materials, such as carbon nanotubes and porphyrins. Therefore, in this work composites of carbon nanotubes (CNT) and cellulose acetate (CA), which is a biodegradable polymer, were developed in order to achieve the desired electrical conductivity through melt mixing processing, since CNTs are known as excellent fillers with amazing conductive properties. Also, porphyrins, which are conjugated macromolecules recognized not only by its optical but also by the possibility of having electrical properties were incorporated with the polymer and nanofibers were obtained through electrospinning. The results revealed that CNTs nanocomposites achieved the desired electric conductivity when 0.5 wt% of non-functionalized CNTs were melt mixing with CA. Metallation of porphyrins with a transition metal (iridium) affected severely of the final properties of the nanofibers, which exhibited distinct characteristics. CA fibers with the porphyrin showed fluorescence and high intensity emission, but they did not exhibit electrical properties. Whereas, the nanofibers prepared with the metallated porphyrin showed a lower emissivity but revealed the establishment of conductive paths. Overall, the results of this research work demonstrated that it is possible to obtain CA based novel materials with optic and/or electronic properties by the incorporation of nanotubes or porphyrins.
Atualmente a tecnológica evoluiu para a produção de dispositivos com dimensões reduzidas mas também mais eficientes. Esta necessidade quando aliada às motivações ambientais sobre a crescente utilização de plásticos, tem desafiado investigadores a desenvolver materiais inovadores que cumpram ambas as premissas. Os materiais óptico/electrónicos utilizados em dispositivos, são um exemplo de uma área de pesquisa muito exigente. Estes podem ser encontrados na maioria das aplicações utilizadas no nosso dia-a-dia como em LEDs nos automóveis e na iluminação das nossas habitações, baterias e também como anti-estáticos, entre outros. Considerando as várias estratégias possíveis para obter materiais com propriedades óptico/electrónicas e tendo em conta todas as preocupações ambientais, o desenvolvimento de materiais compósitos ou nanocompósitos com polímeros biodegradáveis usando técnicas de processamento amigas do ambiente surge com uma alternativa. As propriedades ópticas e/ou electrónicas finais são proporcionados pela introdução de materiais funcionais, tais como nanotubos de carbono e porfirinas. De acordo com este desafio, neste trabalho compósitos de acetato de celulose (CA), polímero biodegradável, e nanotubos de carbono (CNT), foram desenvolvidos através do processamento no fundido de forma a obter materiais que exibam algum nível de condutividade eléctrica, uma vez que os nanotubos de carbono são caracterizados como excelentes reforços com propriedades condutoras surpreendentes. As porfirinas, que são macromoléculas conjugadas conhecidas não só pelas suas propriedades ópticas mas também pela possibilidade de exibirem propriedades eléctricas, foram incorporadas no polímero obtendo-se nanofibras utilizando a técnica de electrospinning. Os resultados mostraram que os nanocompósitos com os nanotubos de carbono apresentaram a condutividade eléctrica desejada, quando 0,5 % em peso de nanotubos de carbono não funcionalizados foram incorporados no CA. ,Verificou-se também que a introdução de um metal de transição (irídio) nas porfirinas afectou as propriedades finais das nanofibras, obtendo-se fibras com características distintas. As fibras de CA com as porfirinas apresentaram fluorescência e uma alta intensidade de emissão, mas não exibiu propriedades eléctricas. Enquanto que as nanofibras preparadas com a porfirina metalizada mostrou uma emissividade inferior, mas revelou alguma condutividade eléctrica. No geral, os resultados desta investigação revelaram que é possível obter materiais inovadores com propriedades óptico/electrónicas baseados na incorporação de nanotubos ou porfirinas num polímero biodegradável.
Części książek na temat "Flexible conductive fibers"
Xiang, Dong. "Flexible Strain Sensors Based on Elastic Fibers of Conductive Polymer Composites". W Carbon-Based Conductive Polymer Composites, 113–25. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003218661-6.
Pełny tekst źródłaQureshi, Yumna, Mostapha Tarfaoui, Khalil K. Lafdi i Khalid Lafdi. "In-situ Strain Monitoring Performance of Flexible Nylon/Ag Conductive Fiber in Composites Subjected to Cyclic Tensile Loading". W Lecture Notes in Civil Engineering, 716–26. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-64594-6_69.
Pełny tekst źródłaKumar Patel, Suchit. "Experimental Investigation of Glass Fiber Reinforced Clayey Soil for Its Possible Application as Pavement Subgrade Material". W New Approaches in Foundation Engineering [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.102802.
Pełny tekst źródłaRăzvan Rădulescu, Ion, Lilioara Surdu, Emilia Visileanu, Bogdana Mitu i Cristian Morari. "Life Cycle Assessment of Flexible Electromagnetic Shields". W Electromagnetic Compatibility [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.99772.
Pełny tekst źródłaStreszczenia konferencji na temat "Flexible conductive fibers"
Wang, Ranran, Yin Cheng i Jing Sun. "Smart Fibers Based on Low Dimensional Conductive Materials". W 2018 International Flexible Electronics Technology Conference (IFETC). IEEE, 2018. http://dx.doi.org/10.1109/ifetc.2018.8583915.
Pełny tekst źródłaTakamatsu, Seiichi, Takahiko Imai, Takahiro Yamashita, Takeshi Kobayashi, Koji Miyake i Toshihiro Itoh. "Flexible fabric keyboard with conductive polymer-coated fibers". W 2011 IEEE Sensors. IEEE, 2011. http://dx.doi.org/10.1109/icsens.2011.6127391.
Pełny tekst źródłaGibbs, Peter, i H. Harry Asada. "Wearable Conductive Fiber Sensors for Continuous Joint Movement Monitoring". W ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-59271.
Pełny tekst źródłaAliahmad, Nojan, Mangilal Agarwal, Sudhir Shrestha i Kody Varahramyan. "Paper-Based Lithium Magnesium Oxide Battery". W ASME 2013 International Manufacturing Science and Engineering Conference collocated with the 41st North American Manufacturing Research Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/msec2013-1243.
Pełny tekst źródłaGauthier, Nicolas, Mourad Roudjane, Antoine Frasie, Mouna Loukili, Asma Ben Saad, Isabelle Page, Younes Messaddeq, Laurent J. Bouyer i Benoit Gosselin. "Multimodal Electrophysiological Signal Measurement using a New Flexible and Conductive Polymer Fiber-electrode". W 2020 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) in conjunction with the 43rd Annual Conference of the Canadian Medical and Biological Engineering Society. IEEE, 2020. http://dx.doi.org/10.1109/embc44109.2020.9176420.
Pełny tekst źródła