Artykuły w czasopismach na temat „FLEXIBLE BIOSENSOR”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „FLEXIBLE BIOSENSOR”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Shin, Minkyu, Jinho Yoon, Chanyong Yi, Taek Lee i Jeong-Woo Choi. "Flexible HIV-1 Biosensor Based on the Au/MoS2 Nanoparticles/Au Nanolayer on the PET Substrate". Nanomaterials 9, nr 8 (26.07.2019): 1076. http://dx.doi.org/10.3390/nano9081076.
Pełny tekst źródłaWang, Yi, Tong Li, Yangfeng Li, Rong Yang i Guangyu Zhang. "2D-Materials-based Wearable Biosensor Systems". Biosensors 12, nr 11 (27.10.2022): 936. http://dx.doi.org/10.3390/bios12110936.
Pełny tekst źródłaFallatah, Ahmad, Nicolas Kuperus, Mohammed Almomtan i Sonal Padalkar. "Sensitive Biosensor Based on Shape-Controlled ZnO Nanostructures Grown on Flexible Porous Substrate for Pesticide Detection". Sensors 22, nr 9 (5.05.2022): 3522. http://dx.doi.org/10.3390/s22093522.
Pełny tekst źródłaYu, Wei, Pei Jie Cai, Rui Liu, Fang Ping Shen i Ting Zhang. "A Flexible Ultrasensitive IgG-Modified rGO-Based FET Biosensor Fabricated by Aerosol Jet Printing". Applied Mechanics and Materials 748 (kwiecień 2015): 157–61. http://dx.doi.org/10.4028/www.scientific.net/amm.748.157.
Pełny tekst źródłaNan, Minghui, Bobby Aditya Darmawan, Gwangjun Go, Shirong Zheng, Junhyeok Lee, Seokjae Kim, Taeksu Lee, Eunpyo Choi, Jong-Oh Park i Doyeon Bang. "Wearable Localized Surface Plasmon Resonance-Based Biosensor with Highly Sensitive and Direct Detection of Cortisol in Human Sweat". Biosensors 13, nr 2 (24.01.2023): 184. http://dx.doi.org/10.3390/bios13020184.
Pełny tekst źródłaNolan, James K., Tran N. H. Nguyen, Khanh Vy H. Le, Luke E. DeLong i Hyowon Lee. "Simple Fabrication of Flexible Biosensor Arrays Using Direct Writing for Multianalyte Measurement from Human Astrocytes". SLAS TECHNOLOGY: Translating Life Sciences Innovation 25, nr 1 (26.11.2019): 33–46. http://dx.doi.org/10.1177/2472630319888442.
Pełny tekst źródłaKhosravi, Safoora, Saeid Soltanian, Amir Servati, Ali Khademhosseini, Yangzhi Zhu i Peyman Servati. "Screen-Printed Textile-Based Electrochemical Biosensor for Noninvasive Monitoring of Glucose in Sweat". Biosensors 13, nr 7 (27.06.2023): 684. http://dx.doi.org/10.3390/bios13070684.
Pełny tekst źródłaLiu, Mingyang, Muqun Yang, Muxue Wang, Han Wang i Jing Cheng. "A Flexible Dual-Analyte Electrochemical Biosensor for Salivary Glucose and Lactate Detection". Biosensors 12, nr 4 (31.03.2022): 210. http://dx.doi.org/10.3390/bios12040210.
Pełny tekst źródłaShalannanda, Wervyan, Ardianto Satriawan, Muhammad Fairuziko Nurrajab, Anchelmia Chyntia Hanna Ayulestari, Diah Ayu Safitri, Finna Alivia Nabila, Casi Setianingsih i Isa Anshori. "Biosensors for therapeutic drug monitoring: a review". F1000Research 12 (13.02.2023): 171. http://dx.doi.org/10.12688/f1000research.130863.1.
Pełny tekst źródłaMasurkar, Nirul, Sundeep Varma i Leela Mohana Reddy Arava. "Supported and Suspended 2D Material-Based FET Biosensors". Electrochem 1, nr 3 (23.07.2020): 260–77. http://dx.doi.org/10.3390/electrochem1030017.
Pełny tekst źródłaSmith, Dustin D., Joshua P. King, D. Wade Abbott i Hans-Joachim Wieden. "Development of a Real-Time Pectic Oligosaccharide-Detecting Biosensor Using the Rapid and Flexible Computational Identification of Non-Disruptive Conjugation Sites (CINC) Biosensor Design Platform". Sensors 22, nr 3 (26.01.2022): 948. http://dx.doi.org/10.3390/s22030948.
Pełny tekst źródłaGao, Panpan, Toshihiro Kasama, Jungchan Shin, Yixuan Huang i Ryo Miyake. "A Mediated Enzymatic Electrochemical Sensor Using Paper-Based Laser-Induced Graphene". Biosensors 12, nr 11 (9.11.2022): 995. http://dx.doi.org/10.3390/bios12110995.
Pełny tekst źródłaFang, Weihao, Xiaoqing Lv, Zhengtai Ma, Jian Liu, Weihua Pei i Zhaoxin Geng. "A Flexible Terahertz Metamaterial Biosensor for Cancer Cell Growth and Migration Detection". Micromachines 13, nr 4 (16.04.2022): 631. http://dx.doi.org/10.3390/mi13040631.
Pełny tekst źródłaHussain, Arif, Naseem Abbas i Ahsan Ali. "Inkjet Printing: A Viable Technology for Biosensor Fabrication". Chemosensors 10, nr 3 (9.03.2022): 103. http://dx.doi.org/10.3390/chemosensors10030103.
Pełny tekst źródłaMitsubayashi, K., J. M. Dicks, K. Yokoyama, T. Takeuchi, E. Tamiya i I. Karube. "A flexible biosensor for glucose". Electroanalysis 7, nr 1 (styczeń 1995): 83–87. http://dx.doi.org/10.1002/elan.1140070110.
Pełny tekst źródłaYang, Xudong, i Huanyu Cheng. "Recent Developments of Flexible and Stretchable Electrochemical Biosensors". Micromachines 11, nr 3 (26.02.2020): 243. http://dx.doi.org/10.3390/mi11030243.
Pełny tekst źródłaRodrigues, Daniela, Ana I. Barbosa, Rita Rebelo, Il Keun Kwon, Rui L. Reis i Vitor M. Correlo. "Skin-Integrated Wearable Systems and Implantable Biosensors: A Comprehensive Review". Biosensors 10, nr 7 (21.07.2020): 79. http://dx.doi.org/10.3390/bios10070079.
Pełny tekst źródłaMao, Yupeng, Yongsheng Zhu, Tianming Zhao, Changjun Jia, Meiyue Bian, Xinxing Li, Yuanguo Liu i Baodan Liu. "A Portable and Flexible Self-Powered Multifunctional Sensor for Real-Time Monitoring in Swimming". Biosensors 11, nr 5 (8.05.2021): 147. http://dx.doi.org/10.3390/bios11050147.
Pełny tekst źródłaBai, Junkai, Hongfu Guo, Hua Li, Chen Zhou i Hanchao Tang. "Flexible Microwave Biosensor for Skin Abnormality Detection Based on Spoof Surface Plasmon Polaritons". Micromachines 12, nr 12 (12.12.2021): 1550. http://dx.doi.org/10.3390/mi12121550.
Pełny tekst źródłaMarculescu, Catalin, Petruta Preda, Tiberiu Burinaru, Eugen Chiriac, Bianca Tincu, Alina Matei, Oana Brincoveanu, Cristina Pachiu i Marioara Avram. "Customizable Fabrication Process for Flexible Carbon-Based Electrochemical Biosensors". Chemosensors 11, nr 4 (24.03.2023): 204. http://dx.doi.org/10.3390/chemosensors11040204.
Pełny tekst źródłaJiang, Yanke, Meng Xu i Vamsi K. Yadavalli. "Silk Fibroin-Sheathed Conducting Polymer Wires as Organic Connectors for Biosensors". Biosensors 9, nr 3 (28.08.2019): 103. http://dx.doi.org/10.3390/bios9030103.
Pełny tekst źródłaMao, Yupeng, Yongsheng Zhu, Changjun Jia, Tianming Zhao i Jiabin Zhu. "A Self-Powered Flexible Biosensor for Human Exercise Intensity Monitoring". Journal of Nanoelectronics and Optoelectronics 16, nr 5 (1.05.2021): 699–706. http://dx.doi.org/10.1166/jno.2021.2997.
Pełny tekst źródłaVázquez, Antonio, Joannes Diaz, Edgar Vazquez, Lina Acosta i Lisandro Cunci. "Inkjet Electrodes for Developing Wearable Sensors for the Detection of Peptides and Neurotransmitters in Sweat Using Flexible Materials". ECS Meeting Abstracts MA2022-02, nr 62 (9.10.2022): 2279. http://dx.doi.org/10.1149/ma2022-02622279mtgabs.
Pełny tekst źródłaBai, Yongchang, i Shuang Li. "Oxidative Stress Sensing System for 8-OHdG Detection Based on Plasma Coupled Electrochemistry by Transparent ITO/AuNTAs/PtNPs Electrode". Biosensors 13, nr 6 (12.06.2023): 643. http://dx.doi.org/10.3390/bios13060643.
Pełny tekst źródłaKhor, Sook Mei, Joonhwa Choi, Phillip Won i Seung Hwan Ko. "Challenges and Strategies in Developing an Enzymatic Wearable Sweat Glucose Biosensor as a Practical Point-Of-Care Monitoring Tool for Type II Diabetes". Nanomaterials 12, nr 2 (10.01.2022): 221. http://dx.doi.org/10.3390/nano12020221.
Pełny tekst źródłaZhang, Yani, Ting Miao, Qiyuan Mu, Lei Zhou, Cheng Meng, Jia Xue i Yiming Yao. "A Novel High-Sensitivity Terahertz Microstructure Fiber Biosensor for Detecting Cancer Cells". Photonics 9, nr 9 (6.09.2022): 639. http://dx.doi.org/10.3390/photonics9090639.
Pełny tekst źródłaZhao, Yunong, Yanbing Tao, Qing Huang, Jing Huang, Jiayu Kuang, Ruiqin Gu, Pei Zeng, Hua-Yao Li, Huageng Liang i Huan Liu. "Electrochemical Biosensor Employing Bi2S3 Nanocrystals-Modified Electrode for Bladder Cancer Biomarker Detection". Chemosensors 10, nr 2 (27.01.2022): 48. http://dx.doi.org/10.3390/chemosensors10020048.
Pełny tekst źródłaWang, Xiaoming, Yineng Xiao, Fangming Deng, Yugen Chen i Hailiang Zhang. "Eye-Movement-Controlled Wheelchair Based on Flexible Hydrogel Biosensor and WT-SVM". Biosensors 11, nr 6 (16.06.2021): 198. http://dx.doi.org/10.3390/bios11060198.
Pełny tekst źródłaFurusawa, Hiroyuki, Yusuke Ichimura, Kuniaki Nagamine, Rei Shiwaku, Hiroyuki Matsui i Shizuo Tokito. "Detection of 1,5-anhydroglucitol as a Biomarker for Diabetes Using an Organic Field-Effect Transistor-Based Biosensor". Technologies 6, nr 3 (15.08.2018): 77. http://dx.doi.org/10.3390/technologies6030077.
Pełny tekst źródłaMie, Masayasu, Rena Hirashima, Yasumasa Mashimo i Eiry Kobatake. "Construction of an Enzymatically-Conjugated DNA Aptamer–Protein Hybrid Molecule for Use as a BRET-Based Biosensor". Applied Sciences 10, nr 21 (29.10.2020): 7646. http://dx.doi.org/10.3390/app10217646.
Pełny tekst źródłaFaruk Hossain, Md, i Gymama Slaughter. "Flexible electrochemical uric acid and glucose biosensor". Bioelectrochemistry 141 (październik 2021): 107870. http://dx.doi.org/10.1016/j.bioelechem.2021.107870.
Pełny tekst źródłaChou, Jung-Chuan, Cian-Yi Wu, Po-Yu Kuo, Chih-Hsien Lai, Yu-Hsun Nien, You-Xiang Wu, Si-Hong Lin i Yi-Hung Liao. "The Flexible Urea Biosensor Using Magnetic Nanoparticles". IEEE Transactions on Nanotechnology 18 (2019): 484–90. http://dx.doi.org/10.1109/tnano.2019.2895137.
Pełny tekst źródłaSerban, Simona, i Nabil El Murr. "Redox-flexible NADH oxidase biosensor: A platform for various dehydrogenase bioassays and biosensors". Electrochimica Acta 51, nr 24 (lipiec 2006): 5143–49. http://dx.doi.org/10.1016/j.electacta.2006.03.052.
Pełny tekst źródłaWallace, Shay Goff, Michael C. Brothers, Zachary E. Brooks, Sonal V. Rangnekar, David Lam, Michael J. St Lawrence, William A. Gaviria Rojas, Karl W. Putz, Steve S. Kim i Mark C. Hersam. "Fully printed and flexible multi-material electrochemical aptasensor platform enabled by selective graphene biofunctionalization". Engineering Research Express 4, nr 1 (1.03.2022): 015037. http://dx.doi.org/10.1088/2631-8695/ac5e27.
Pełny tekst źródłaCosta, Nuna G., Joana C. Antunes, Antonio J. Paleo i Ana M. Rocha. "A Review on Flexible Electrochemical Biosensors to Monitor Alcohol in Sweat". Biosensors 12, nr 4 (16.04.2022): 252. http://dx.doi.org/10.3390/bios12040252.
Pełny tekst źródłaKongkaew, Supatinee, Lingyin Meng, Warakorn Limbut, Guozhen Liu, Proespichaya Kanatharana, Panote Thavarungkul i Wing Cheung Mak. "Craft-and-Stick Xurographic Manufacturing of Integrated Microfluidic Electrochemical Sensing Platform". Biosensors 13, nr 4 (31.03.2023): 446. http://dx.doi.org/10.3390/bios13040446.
Pełny tekst źródłaPaul K, Brince, Asisa Kumar Panigrahi, Vikrant Singh i Shiv Govind Singh. "A multi-walled carbon nanotube–zinc oxide nanofiber based flexible chemiresistive biosensor for malaria biomarker detection". Analyst 142, nr 12 (2017): 2128–35. http://dx.doi.org/10.1039/c7an00243b.
Pełny tekst źródłaXue, Qiannan, Zheyu Li, Qikun Wang, Wenwei Pan, Ye Chang i Xuexin Duan. "Nanostrip flexible microwave enzymatic biosensor for noninvasive epidermal glucose sensing". Nanoscale Horizons 5, nr 6 (2020): 934–43. http://dx.doi.org/10.1039/d0nh00098a.
Pełny tekst źródłaXue, Jia, Yani Zhang, Zhe Guang, Ting Miao, Zohaib Ali, Dun Qiao, Yiming Yao i in. "Ultra-High Sensitivity Terahertz Microstructured Fiber Biosensor for Diabetes Mellitus and Coronary Heart Disease Marker Detection". Sensors 23, nr 4 (10.02.2023): 2020. http://dx.doi.org/10.3390/s23042020.
Pełny tekst źródłaAbadi, Zahra, Vahid Mottaghitalab, Mansour Bidoki i Ali Benvidi. "Flexible biosensor using inkjet printing of silver nanoparticles". Sensor Review 34, nr 4 (26.08.2014): 360–66. http://dx.doi.org/10.1108/sr-07-2013-704.
Pełny tekst źródłaMuhammad, Naseer, Qiang Liu, Xiaopin Tang, Tao Fu, Adnan Daud Khan i Zhengbiao Ouyang. "Highly Flexible and Voltage Based Wavelength Tunable Biosensor". physica status solidi (a) 216, nr 6 (30.01.2019): 1800633. http://dx.doi.org/10.1002/pssa.201800633.
Pełny tekst źródłaNien, Yu-Hsun, Zhi-Xuan Kang, Tzu-Yu Su, Chih-Sung Ho, Jung-Chuan Chou, Chih-Hsien Lai, Po-Yu Kuo i in. "Investigation of Flexible Arrayed Lactate Biosensor Based on Copper Doped Zinc Oxide Films Modified by Iron–Platinum Nanoparticles". Polymers 13, nr 13 (23.06.2021): 2062. http://dx.doi.org/10.3390/polym13132062.
Pełny tekst źródłaWeng, Bo, Aoife Morrin, Roderick Shepherd, Karl Crowley, Anthony J. Killard, Peter C. Innis i Gordon G. Wallace. "Wholly printed polypyrrole nanoparticle-based biosensors on flexible substrate". J. Mater. Chem. B 2, nr 7 (2014): 793–99. http://dx.doi.org/10.1039/c3tb21378a.
Pełny tekst źródłaLi, Yi-Chen Ethan, i I.-Chi Lee. "The Current Trends of Biosensors in Tissue Engineering". Biosensors 10, nr 8 (3.08.2020): 88. http://dx.doi.org/10.3390/bios10080088.
Pełny tekst źródłaFeng, Yingzhu, Zhangzhang Xie, Xuanlong Jiang, Zhen Li, Yuping Shen, Bochu Wang i Jianzhong Liu. "The Applications of Promoter-gene-Engineered Biosensors". Sensors 18, nr 9 (27.08.2018): 2823. http://dx.doi.org/10.3390/s18092823.
Pełny tekst źródłaMusliha Ajmal Mokhtar, Siti, Mastura Omar, Zahari Abu Bakar, Yusmeeraz Yusof, Zairi Ismael Rizman i . "Graphene-Based Wearable Electrochemical Glucose Biosensor: A Review". International Journal of Engineering & Technology 7, nr 3.14 (25.07.2018): 250. http://dx.doi.org/10.14419/ijet.v7i3.14.16902.
Pełny tekst źródłaUpasham, Sayali, Serena Bhadsavle i Shalini Prasad. "Non-invasive monitoring of a circadian relevant biomarker from easily accessible body fluids using hybrid aqueous–ionic buffer interfaces on flexible substrates". Analytical Methods 11, nr 9 (2019): 1180–91. http://dx.doi.org/10.1039/c8ay02620c.
Pełny tekst źródłaKim, Wan-Sun, Gi-Ja Lee, Je-Hwang Ryu, KyuChang Park i Hun-Kuk Park. "A flexible, nonenzymatic glucose biosensor based on Ni-coordinated, vertically aligned carbon nanotube arrays". RSC Adv. 4, nr 89 (2014): 48310–16. http://dx.doi.org/10.1039/c4ra07615j.
Pełny tekst źródłaBouherour, M., N. Aouabdia, M. Lamri Zeggar, N. H. Touidjen i S. Rouabah. "A wearable flexible graphene biosensor for environmental toxicity monitoring". Digest Journal of Nanomaterials and Biostructures 17, nr 3 (czerwiec 2022): 695–703. http://dx.doi.org/10.15251/djnb.2022.173.695.
Pełny tekst źródłaJin, Xiaofeng, Guanhua Li, Tailin Xu, Lei Su, Dan Yan i Xueji Zhang. "Fully integrated flexible biosensor for wearable continuous glucose monitoring". Biosensors and Bioelectronics 196 (styczeń 2022): 113760. http://dx.doi.org/10.1016/j.bios.2021.113760.
Pełny tekst źródła