Gotowa bibliografia na temat „FLEXIBLE BIOSENSOR”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „FLEXIBLE BIOSENSOR”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "FLEXIBLE BIOSENSOR"
Shin, Minkyu, Jinho Yoon, Chanyong Yi, Taek Lee i Jeong-Woo Choi. "Flexible HIV-1 Biosensor Based on the Au/MoS2 Nanoparticles/Au Nanolayer on the PET Substrate". Nanomaterials 9, nr 8 (26.07.2019): 1076. http://dx.doi.org/10.3390/nano9081076.
Pełny tekst źródłaWang, Yi, Tong Li, Yangfeng Li, Rong Yang i Guangyu Zhang. "2D-Materials-based Wearable Biosensor Systems". Biosensors 12, nr 11 (27.10.2022): 936. http://dx.doi.org/10.3390/bios12110936.
Pełny tekst źródłaFallatah, Ahmad, Nicolas Kuperus, Mohammed Almomtan i Sonal Padalkar. "Sensitive Biosensor Based on Shape-Controlled ZnO Nanostructures Grown on Flexible Porous Substrate for Pesticide Detection". Sensors 22, nr 9 (5.05.2022): 3522. http://dx.doi.org/10.3390/s22093522.
Pełny tekst źródłaYu, Wei, Pei Jie Cai, Rui Liu, Fang Ping Shen i Ting Zhang. "A Flexible Ultrasensitive IgG-Modified rGO-Based FET Biosensor Fabricated by Aerosol Jet Printing". Applied Mechanics and Materials 748 (kwiecień 2015): 157–61. http://dx.doi.org/10.4028/www.scientific.net/amm.748.157.
Pełny tekst źródłaNan, Minghui, Bobby Aditya Darmawan, Gwangjun Go, Shirong Zheng, Junhyeok Lee, Seokjae Kim, Taeksu Lee, Eunpyo Choi, Jong-Oh Park i Doyeon Bang. "Wearable Localized Surface Plasmon Resonance-Based Biosensor with Highly Sensitive and Direct Detection of Cortisol in Human Sweat". Biosensors 13, nr 2 (24.01.2023): 184. http://dx.doi.org/10.3390/bios13020184.
Pełny tekst źródłaNolan, James K., Tran N. H. Nguyen, Khanh Vy H. Le, Luke E. DeLong i Hyowon Lee. "Simple Fabrication of Flexible Biosensor Arrays Using Direct Writing for Multianalyte Measurement from Human Astrocytes". SLAS TECHNOLOGY: Translating Life Sciences Innovation 25, nr 1 (26.11.2019): 33–46. http://dx.doi.org/10.1177/2472630319888442.
Pełny tekst źródłaKhosravi, Safoora, Saeid Soltanian, Amir Servati, Ali Khademhosseini, Yangzhi Zhu i Peyman Servati. "Screen-Printed Textile-Based Electrochemical Biosensor for Noninvasive Monitoring of Glucose in Sweat". Biosensors 13, nr 7 (27.06.2023): 684. http://dx.doi.org/10.3390/bios13070684.
Pełny tekst źródłaLiu, Mingyang, Muqun Yang, Muxue Wang, Han Wang i Jing Cheng. "A Flexible Dual-Analyte Electrochemical Biosensor for Salivary Glucose and Lactate Detection". Biosensors 12, nr 4 (31.03.2022): 210. http://dx.doi.org/10.3390/bios12040210.
Pełny tekst źródłaShalannanda, Wervyan, Ardianto Satriawan, Muhammad Fairuziko Nurrajab, Anchelmia Chyntia Hanna Ayulestari, Diah Ayu Safitri, Finna Alivia Nabila, Casi Setianingsih i Isa Anshori. "Biosensors for therapeutic drug monitoring: a review". F1000Research 12 (13.02.2023): 171. http://dx.doi.org/10.12688/f1000research.130863.1.
Pełny tekst źródłaMasurkar, Nirul, Sundeep Varma i Leela Mohana Reddy Arava. "Supported and Suspended 2D Material-Based FET Biosensors". Electrochem 1, nr 3 (23.07.2020): 260–77. http://dx.doi.org/10.3390/electrochem1030017.
Pełny tekst źródłaRozprawy doktorskie na temat "FLEXIBLE BIOSENSOR"
Arkhangelskiy, Artem. "Plasma-Assisted Deposition of Natural Polymers for Flexible Biosensor Applications". Doctoral thesis, Università degli studi di Trento, 2022. https://hdl.handle.net/11572/362102.
Pełny tekst źródłaTur, García Eva. "Development of a flexible biosensor for the monitoring of lactate in human sweat for its medical use in pressure ischemia". Thesis, Cranfield University, 2014. http://dspace.lib.cranfield.ac.uk/handle/1826/9254.
Pełny tekst źródłaGeitmann, Matthis. "Biosensor Studies of Ligand Interactions with Structurally Flexible Enzymes : Applications for Antiviral Drug Development". Doctoral thesis, Uppsala universitet, Institutionen för naturvetenskaplig biokemi, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-5797.
Pełny tekst źródłaZhang, Panpan, Sheng Yang, Roberto Pineda-Gómez, Bergoi Ibarlucea, Ji Ma, Martin R. Lohe, Teuku Fawzul Akbar, Larysa Baraban, Gianaurelio Cuniberti i Xinliang Feng. "Electrochemically Exfoliated High-Quality 2H-MoS₂ for Multiflake Thin Film Flexible Biosensors". Wiley-VCH, 2019. https://tud.qucosa.de/id/qucosa%3A73171.
Pełny tekst źródłaPal, Ramendra K. "Fabrication of flexible, biofunctional architectures from silk proteins". VCU Scholars Compass, 2017. http://scholarscompass.vcu.edu/etd/4995.
Pełny tekst źródłaAndersson, Simon. "Point-of-care beta-hydroxybutyrate determination for the management of diabetic ketoacidosis based on flexible laser-induced graphene electrode system". Thesis, Linköpings universitet, Sensor- och aktuatorsystem, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-179116.
Pełny tekst źródłaCruz, Hugo Cardoso da. "Development of electrodes in polymeric flexible substrates for organic biosensors". Master's thesis, Universidade de Aveiro, 2015. http://hdl.handle.net/10773/16270.
Pełny tekst źródłaThe increase of organic electronics and consequently, the development of sensors based on organic polymers have attracted a lot of attention of the scientific community. Intrigued by these multifunctional, easily processed and low cost materials, it has started to develop odour biosensors for different applications, including medical field and the detection of various diseases. The present work, is focused in the scaling-up of a devoted laboratory approach, in particular concerning the development of organic odour biosensors (electronic nose concept) based on a conductive polymer (PEDOT:PSS) in a pre-industrial approach and produced by means of electronic printing techniques, such as screen printing and slot die. New carbon microelectrodes with different geometrical parameters were designed and processed by the screen printing technique. Further, the slot die technique was applied in order to print the PEDOT:PSS film over the microelectrodes. After the fabrication process, the sensors were morphologically characterized by optical microscopy, atomic force microscopy, profilometry and electrically identified by the two points probe method. The sensors were tested with the use of different analytes with the main focus on two gynaecological analytes. The resistive and capacitive electrical sensor responses for the analytes were analysed and discussed in depth. Important results were obtained with regard to the influence of the geometrical parameters of the carbon microelectrodes and also to the polymer thickness. Finally, the tests on the sensors were also carried out with the use of other analytes which contained blue cheese.
O desenvolvimento de eletrónica orgânica e consequentemente o desenvolvimento de sensores baseados em polímeros orgânicos, atraíram a atenção da comunidade científica. Motivada pela multifuncionalidade, fácil processamento e baixo custo destes materiais, novos biossensores de odor para diversas aplicações começaram a ser desenvolvidos, incluindo na área médica, para a deteção de doenças. Este trabalho, baseou-se no processo de “scaling-up” de um trabalho prévio que teve um objetivo meramente laboratorial, em particular no desenvolvimento de biossensores orgânicos de odor (conceito de nariz eletrónico), baseados em polímeros orgânicos (PEDOT:PSS) num paradigma pré industrial e fabricados pelo meio de técnicas de impressão de eletrónica orgânica, tais como screen printing e slot die. Foram desenhados novos microelétrodos de carbono com diferentes parâmetros geométricos que foram posteriormente produzidos por screen printing. Através da técnica de impressa de slot die, foram posteriormente impresso filmes de PEDOT:PSS sobre os microelétrodos. Após o processo de fabrico, os sensores foram morfologicamente caraterizados por microscopia ótica, microscopia de força atómica, perfilometria e eletricamente caraterizados através da técnica de duas pontas. Os sensores foram testados para diferentes analitos, nomeadamente para dois analitos ginecológicos. A resposta resistiva e capacitiva dos sensores expostos aos analitos, foi obtida e analisada, com especial atenção na influência dos parâmetros geométricos dos microelétrodos de carbono e também na espessura do polímero. Por fim, os sensores foram também testados para outros analitos compostos por queijo azul.
Joshi, Saumya [Verfasser], Paolo [Akademischer Betreuer] Lugli, Oliver [Gutachter] Hayden i Paolo [Gutachter] Lugli. "Flexible biosensors using solution processable devices / Saumya Joshi ; Gutachter: Oliver Hayden, Paolo Lugli ; Betreuer: Paolo Lugli". München : Universitätsbibliothek der TU München, 2019. http://d-nb.info/1201481619/34.
Pełny tekst źródłaChang, Yun-Tzu, i 張云慈. "A Flexible Direct-Growth CNT Biosensor". Thesis, 2013. http://ndltd.ncl.edu.tw/handle/36164156537148135984.
Pełny tekst źródła國立清華大學
材料科學工程學系
101
In this study, a biosensor was fabricated by growing carbon nanotubes (CNTs) directly on polyimide flexible substrate at low temperatures (400 °C) with chemical vapor deposition (CVD) process. Thereafter, a biocompatible polymer (parylene) was coated on the surface area without CNTs as an insulator for future applications in flexible biosensors for in-vivo sensing. The surface of CNTs was modified with functional groups by utilizing UV-ozone, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), and N-hydroxysuccinimide (NHS) treatment to improve the biocompatibility for the following conjugation of protein. Following that, the sensing surface was modified with anti-human serum albumin (AHSA), blocked by bovine serum albumin (BSA), and then conjugated with different concentrations of targeted human serum albumin (HSA) for HSA detection. The electrical properties of the biosensors, applied with various HSA concentrations, were measured and quantified by using an electrochemical impedance spectroscopy (EIS) system under AC conditions. Results showed that the impedance change was well correlated to the HSA concentration from 2 * 10^-12 to 2 * 10^-1 mg/ml, and exhibited a detection limit of the 3 * 10^-11 mg/ml. In summary, the feasibility of the CNTs flexible biosensor for HSA detection was demonstrated by utilizing electrochemical impedimetry to quantify human serum albumin concentration. Compared to other CNTs flexible biosensors, because of the employment of CVD process and the 3D structure of the direct-growth CNTs, the biosensor proposed in this work could be fabricated by a simpler process and provide a good detection limit. It shows a great potential for future application of wearable biosensor and implanting detection.
Hsu, FangTzu, i 許芳慈. "The study of flexible electric material for pesticide detection biosensor". Thesis, 2011. http://ndltd.ncl.edu.tw/handle/04108894866057028158.
Pełny tekst źródła中華醫事科技大學
生物醫學研究所
99
The separative structure of an extended-gate field effect transistor (EGFET) is an extremely broad application for detecting ion content in a solution. Inflexible or brittle materials, such as glass, are commonly used as substrates for electrode fabrication. However, such materials limit the range for successful and cost effective application in the environment. In our research, indium tin oxide (ITO) films were directly deposited onto the polyethylenetelephthalate (PET) substrate as a working electrode for an EGFET. The component exhibited some advantages for pH sensors such as being small, bulk, low cost and material flexibility. The sensor facilitates package to biosensor of detecting pesticides. In the future, the proposed application will be able to detect pollutants rapidly. The initial experimental result showed this structure having the linear and pH Nerstern response of approximately 54-58 mV/pH between pH2 and pH12. In this study, The EnFET structure was immobilized acetylcholinesterase (AChE) resulting from a cross-link method. Normally, AchE hydrolyses acetylcholine (Ach). However these reactions were the result of hydrogen ion generation, causing the changed pH in the membrane. This allowed using the potentionmetric method for voltage value measurement. We changed the buffer pH, acetylcholine concentration and acetylcholinesterase concentration of this process. Result shows the optimization responses of the sensing for detection pesticides. Acetylcholinesterase has been used in the design of biosensors for the detection of pesticides, based on the inhibitor for AchE. This inhibition effect can decrease the hydrogen ions in the sensing membrane. In addition, the mechanisms can be a pesticide biosensor for detecting pollutants. Our experiential results shows that the EnFET is a detection method for 1 ppm Carbofuran pesticide sensing.
Książki na temat "FLEXIBLE BIOSENSOR"
Kim, Jaehwan. Disposable and Flexible Chemical Sensors and Biosensors Made with Renewable Materials. WORLD SCIENTIFIC (EUROPE), 2017. http://dx.doi.org/10.1142/q0112.
Pełny tekst źródłaKim, Jaehwan, Joo-Hyung Kim i Bong Sup Shin. Disposable and Flexible Chemical Sensors and Biosensors Made with Renewable Materials. World Scientific Publishing Co Pte Ltd, 2017.
Znajdź pełny tekst źródłaGerald, David. Smart Biosensors and Intelligent Devices for Salivary Biomarker Detection: Salivary Biomarkers,Smart Design,Flexible Electrode,Intelligent Biosensors,Integrated Device. Independently Published, 2021.
Znajdź pełny tekst źródłaCzęści książek na temat "FLEXIBLE BIOSENSOR"
Yadav, Supriya, Mahesh Kumar, Kulwant Singh, Niti Nipun Sharma i Jamil Akhtar. "Flexible Microfluidics Biosensor Technology". W Electrical and Electronic Devices, Circuits and Materials, 377–86. First edition. | Boca Raton, FL : CRC Press/Taylor & Francis: CRC Press, 2021. http://dx.doi.org/10.1201/9781003097723-23.
Pełny tekst źródłaFayomi, Christian, Herve Achigui Facpong i Gordon W. Roberts. "Passive Biosensors for Flexible Hybrid-Printed Electronic Systems". W Smart Biosensor Technology, 427–39. Second edition. | Boca Raton : Taylor & Francis, 2018.: CRC Press, 2018. http://dx.doi.org/10.1201/9780429429934-19.
Pełny tekst źródłaSekitani, Tsuyoshi. "Soft Biosensor Systems Using Flexible and Stretchable Electronics Technology". W Stretchable Bioelectronics for Medical Devices and Systems, 133–49. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28694-5_7.
Pełny tekst źródłaChen, Jie-Ting, Jung-Chuan Chou, Yi-Hung Liao, Hsueh-Tao Chou, Chin-Yi Lin i Jia-Liang Chen. "Fabrication of Real-Time Wireless Sensing System for Flexible Glucose Biosensor". W Transactions on Engineering Technologies, 425–37. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-8832-8_31.
Pełny tekst źródłaFerrara, V., A. Ottaviani, F. Cavaleri, G. Arrabito, P. Cancemi, Y. P. Ho, B. R. Knudsen i in. "DNA-Based Biosensor on Flexible Nylon Substrate by Dip-Pen Lithography for Topoisomerase Detection". W Lecture Notes in Electrical Engineering, 309–16. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-04324-7_39.
Pełny tekst źródłaAmreen, Khairunnisa, i Sanket Goel. "Printable and Flexible Biosensors". W Bioelectronics, 357–71. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003263265-22.
Pełny tekst źródłaLiao, Caizhi, i Feng Yan. "Flexible Organic Bioelectronics and Biosensors". W Flexible Carbon-based Electronics, 289–310. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527804894.ch10.
Pełny tekst źródła"Protein-Based Photoreceptor Array on Flexible Plastic Substrates". W Smart Biosensor Technology, 483–524. CRC Press, 2006. http://dx.doi.org/10.1201/9781420019506-27.
Pełny tekst źródłaBassi, Amarjeet, Wei Wei Wang i George Knopf. "Protein-Based Photoreceptor Array on Flexible Plastic Substrates". W Smart Biosensor Technology, 461–502. CRC Press, 2006. http://dx.doi.org/10.1201/9781420019506.ch17.
Pełny tekst źródłaKumaresan, Yogeenth, Nirmal G. R. i Praveen Kumar Poola. "Flexible and stretchable indium-fallium-zinc oxide-based electronic devices for sweat pH sensor application". W Metal Oxides for Biomedical and Biosensor Applications, 525–43. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-12-823033-6.00018-1.
Pełny tekst źródłaStreszczenia konferencji na temat "FLEXIBLE BIOSENSOR"
Zhang, Bo, i Tony Zhengyu Cui. "Flexible Layer-by-Layer Self-Assembled Graphene Based Glucose Biosensors". W ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-64423.
Pełny tekst źródłaMiesse, Peyton, i Gymama Slaughter. "Flexible Electrochemical Lactate Biosensor". W 2020 IEEE 15th International Conference on Nano/Micro Engineered and Molecular System (NEMS). IEEE, 2020. http://dx.doi.org/10.1109/nems50311.2020.9265579.
Pełny tekst źródłaRadha Shanmugam, Nandhinee, Sriram Muthukumar i Shalini Prasad. "Zinc Oxide Nanostructures as Electrochemical Biosensors on Flexible Substrates". W ASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/smasis2015-9085.
Pełny tekst źródłaKafi, Md Abdul, Ambarish Paul i Ravinder Dahiya. "Graphene oxide-chitosan based flexible biosensor". W 2017 IEEE SENSORS. IEEE, 2017. http://dx.doi.org/10.1109/icsens.2017.8234441.
Pełny tekst źródłaWang, Qian, Wenhao Lou, Sihong Chen, Jia Zhu, Mengyao Yuan, Chunhong Zhang, Tianyao Zhang, Guang Yao i Yuan Lin. "Flexible Biosensor for Non-invasive Continuous Alcohol Monitoring". W 2022 International Symposium on Antennas and Propagation (ISAP). IEEE, 2022. http://dx.doi.org/10.1109/isap53582.2022.9998605.
Pełny tekst źródłaEscobedo, Pablo, Libu Manjakkal, Markellos Ntagios i Ravinder Dahiya. "Flexible Potentiostat Readout Circuit Patch for Electrochemical and Biosensor Applications". W 2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS). IEEE, 2020. http://dx.doi.org/10.1109/fleps49123.2020.9239515.
Pełny tekst źródłaKanakamedala, Senaka K., Haidar T. Alshakhouri, Mangilal Agarwal, Ji Fang i Mark A. DeCoster. "A simple enzyme based biosensor on flexible plastic substrate". W SPIE NanoScience + Engineering, redaktorzy Hooman Mohseni i Manijeh Razeghi. SPIE, 2010. http://dx.doi.org/10.1117/12.860587.
Pełny tekst źródłaGoktas, Hasan, i Mona Zaghloul. "High sensitivity CMOS portable biosensor with flexible microfluidic integration". W 2013 IEEE Sensors. IEEE, 2013. http://dx.doi.org/10.1109/icsens.2013.6688202.
Pełny tekst źródłaKnopf, George K., i Dogan Sinar. "Flexible hydrogel actuated graphene-cellulose biosensor for monitoring pH". W 2017 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2017. http://dx.doi.org/10.1109/iscas.2017.8050613.
Pełny tekst źródłaNarayanan, J. Shankara, i Gymama Slaughter. "Flexible Non-Enzymatic Glucose Biosensor Based on Gold-Platinum Colloidal". W 2018 IEEE Sensors. IEEE, 2018. http://dx.doi.org/10.1109/icsens.2018.8589627.
Pełny tekst źródła