Artykuły w czasopismach na temat „Flavivirus Infection”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Flavivirus Infection”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Fontoura, Marina Alves, Rebeca Fróes Rocha i Rafael Elias Marques. "Neutrophil Recruitment and Participation in Severe Diseases Caused by Flavivirus Infection". Life 11, nr 7 (20.07.2021): 717. http://dx.doi.org/10.3390/life11070717.
Pełny tekst źródłaMusso, Didier, i Philippe Desprès. "Serological Diagnosis of Flavivirus-Associated Human Infections". Diagnostics 10, nr 5 (14.05.2020): 302. http://dx.doi.org/10.3390/diagnostics10050302.
Pełny tekst źródłaWu, Bingan, Zhongtian Qi i Xijing Qian. "Recent Advancements in Mosquito-Borne Flavivirus Vaccine Development". Viruses 15, nr 4 (23.03.2023): 813. http://dx.doi.org/10.3390/v15040813.
Pełny tekst źródłaQiu, Yang, Yan-Peng Xu, Miao Wang, Meng Miao, Hui Zhou, Jiuyue Xu, Jing Kong i in. "Flavivirus induces and antagonizes antiviral RNA interference in both mammals and mosquitoes". Science Advances 6, nr 6 (luty 2020): eaax7989. http://dx.doi.org/10.1126/sciadv.aax7989.
Pełny tekst źródłaKe, Po-Yuan. "The Multifaceted Roles of Autophagy in Flavivirus-Host Interactions". International Journal of Molecular Sciences 19, nr 12 (7.12.2018): 3940. http://dx.doi.org/10.3390/ijms19123940.
Pełny tekst źródłaZhao, Rong, Meiyue Wang, Jing Cao, Jing Shen, Xin Zhou, Deping Wang i Jimin Cao. "Flavivirus: From Structure to Therapeutics Development". Life 11, nr 7 (25.06.2021): 615. http://dx.doi.org/10.3390/life11070615.
Pełny tekst źródłaLedermann, Jeremy P., Maria A. Lorono-Pino, Christine Ellis, Kali D. Saxton-Shaw, Bradley J. Blitvich, Barry J. Beaty, Richard A. Bowen i Ann M. Powers. "Evaluation of Widely Used Diagnostic Tests To Detect West Nile Virus Infections in Horses Previously Infected with St. Louis Encephalitis Virus or Dengue Virus Type 2". Clinical and Vaccine Immunology 18, nr 4 (23.02.2011): 580–87. http://dx.doi.org/10.1128/cvi.00201-10.
Pełny tekst źródłaLiao, Ching-Len, Yi-Ling Lin, Bi-Ching Wu, Chang-Huei Tsao, Mei-Chuan Wang, Chiu-I. Liu, Yue-Ling Huang, Jui-Hui Chen, Jia-Pey Wang i Li-Kuang Chen. "Salicylates Inhibit Flavivirus Replication Independently of Blocking Nuclear Factor Kappa B Activation". Journal of Virology 75, nr 17 (1.09.2001): 7828–39. http://dx.doi.org/10.1128/jvi.75.17.7828-7839.2001.
Pełny tekst źródłaWahaab, Abdul, Bahar E. Mustafa, Muddassar Hameed, Nigel J. Stevenson, Muhammad Naveed Anwar, Ke Liu, Jianchao Wei, Yafeng Qiu i Zhiyong Ma. "Potential Role of Flavivirus NS2B-NS3 Proteases in Viral Pathogenesis and Anti-flavivirus Drug Discovery Employing Animal Cells and Models: A Review". Viruses 14, nr 1 (28.12.2021): 44. http://dx.doi.org/10.3390/v14010044.
Pełny tekst źródłaHabarugira, Gervais, Jasmin Moran, Jessica J. Harrison, Sally R. Isberg, Jody Hobson-Peters, Roy A. Hall i Helle Bielefeldt-Ohmann. "Evidence of Infection with Zoonotic Mosquito-Borne Flaviviruses in Saltwater Crocodiles (Crocodylus porosus) in Northern Australia". Viruses 14, nr 5 (21.05.2022): 1106. http://dx.doi.org/10.3390/v14051106.
Pełny tekst źródłaQian, Xijing, i Zhongtian Qi. "Mosquito-Borne Flaviviruses and Current Therapeutic Advances". Viruses 14, nr 6 (5.06.2022): 1226. http://dx.doi.org/10.3390/v14061226.
Pełny tekst źródłaReyes-Ruiz, José Manuel, Juan Fidel Osuna-Ramos, Luis Adrián De Jesús-González, Selvin Noé Palacios-Rápalo, Carlos Daniel Cordero-Rivera, Carlos Noe Farfan-Morales, Arianna Mahely Hurtado-Monzón i in. "The Regulation of Flavivirus Infection by Hijacking Exosome-Mediated Cell–Cell Communication: New Insights on Virus–Host Interactions". Viruses 12, nr 7 (16.07.2020): 765. http://dx.doi.org/10.3390/v12070765.
Pełny tekst źródłaPardy, Ryan D., i Martin J. Richer. "Protective to a T: The Role of T Cells during Zika Virus Infection". Cells 8, nr 8 (3.08.2019): 820. http://dx.doi.org/10.3390/cells8080820.
Pełny tekst źródłaGomes da Silva, Priscilla, José Augusto Seixas dos Reis, Marcio Nogueira Rodrigues, Quézia da Silva Ardaya i João Rodrigo Mesquita. "Serological Cross-Reactivity in Zoonotic Flaviviral Infections of Medical Importance". Antibodies 12, nr 1 (24.02.2023): 18. http://dx.doi.org/10.3390/antib12010018.
Pełny tekst źródłaSilvia, Ondine J., Geoffrey R. Shellam i Nadezda Urosevic. "Innate resistance to flavivirus infection in mice controlled by Flv is nitric oxide-independent". Journal of General Virology 82, nr 3 (1.03.2001): 603–7. http://dx.doi.org/10.1099/0022-1317-82-3-603.
Pełny tekst źródłaZheng, Xiaoyan, i Ran Wang. "Metabolomic Analysis of Key Regulatory Metabolites in the Urine of Flavivirus-Infected Mice". Journal of Tropical Medicine 2022 (1.06.2022): 1–12. http://dx.doi.org/10.1155/2022/4663735.
Pełny tekst źródłaNeufeldt, Christopher J., Mirko Cortese, Pietro Scaturro, Berati Cerikan, Jeremy Wideman, Keisuke Tabata, Thais Morase, Olga Oleksiuk, Andreas Pichlmair i Ralf Bartenschlager. "ER-Shaping Atlastin Proteins Act as Central Hubs to Promote Flavivirus Replication and Virion Assembly". Proceedings 50, nr 1 (10.06.2020): 31. http://dx.doi.org/10.3390/proceedings2020050031.
Pełny tekst źródłaLee, Chyan-Jang, Hui-Ru Lin, Ching-Len Liao i Yi-Ling Lin. "Cholesterol Effectively Blocks Entry of Flavivirus". Journal of Virology 82, nr 13 (30.04.2008): 6470–80. http://dx.doi.org/10.1128/jvi.00117-08.
Pełny tekst źródłaHou, Baohua, Hui Chen, Na Gao i Jing An. "Cross-Reactive Immunity among Five Medically Important Mosquito-Borne Flaviviruses Related to Human Diseases". Viruses 14, nr 6 (2.06.2022): 1213. http://dx.doi.org/10.3390/v14061213.
Pełny tekst źródłaGack, Michaela U. "TRIMming Flavivirus Infection". Cell Host & Microbe 10, nr 3 (wrzesień 2011): 175–77. http://dx.doi.org/10.1016/j.chom.2011.08.012.
Pełny tekst źródłaErrico, John M., Laura A. VanBlargan, Christopher A. Nelson, Michael S. Diamond i Daved H. Fremont. "Structural and Antigenic Features of Powassan Virus Envelope Protein". Journal of Immunology 200, nr 1_Supplement (1.05.2018): 126.27. http://dx.doi.org/10.4049/jimmunol.200.supp.126.27.
Pełny tekst źródłaBerneck, Beatrice Sarah, Alexandra Rockstroh, Jasmin Fertey, Thomas Grunwald i Sebastian Ulbert. "A Recombinant Zika Virus Envelope Protein with Mutations in the Conserved Fusion Loop Leads to Reduced Antibody Cross-Reactivity upon Vaccination". Vaccines 8, nr 4 (13.10.2020): 603. http://dx.doi.org/10.3390/vaccines8040603.
Pełny tekst źródłaLee, Tae Hee, Byung-Hak Song, Sang-Im Yun, Hye Ryun Woo, Young-Min Lee, Michael S. Diamond i Kyung Min Chung. "A cross-protective mAb recognizes a novel epitope within the flavivirus NS1 protein". Journal of General Virology 93, nr 1 (1.01.2012): 20–26. http://dx.doi.org/10.1099/vir.0.036640-0.
Pełny tekst źródłaBlahove, Maria Raisa, i James Richard Carter. "Flavivirus Persistence in Wildlife Populations". Viruses 13, nr 10 (18.10.2021): 2099. http://dx.doi.org/10.3390/v13102099.
Pełny tekst źródłaSuzuki, Youichi, i Takeshi Murakawa. "Restriction of Flaviviruses by an Interferon-Stimulated Gene SHFL/C19orf66". International Journal of Molecular Sciences 23, nr 20 (20.10.2022): 12619. http://dx.doi.org/10.3390/ijms232012619.
Pełny tekst źródłaChiou, Shyan-Song, Wayne D. Crill, Li-Kuang Chen i Gwong-Jen J. Chang. "Enzyme-Linked Immunosorbent Assays Using Novel Japanese Encephalitis Virus Antigen Improve the Accuracy of Clinical Diagnosis of Flavivirus Infections". Clinical and Vaccine Immunology 15, nr 5 (12.03.2008): 825–35. http://dx.doi.org/10.1128/cvi.00004-08.
Pełny tekst źródłaWhelan, Jillian N., Nicholas A. Parenti, Joshua Hatterschide, David M. Renner, Yize Li, Hanako M. Reyes, Beihua Dong, Erick R. Perez, Robert H. Silverman i Susan R. Weiss. "Zika virus employs the host antiviral RNase L protein to support replication factory assembly". Proceedings of the National Academy of Sciences 118, nr 22 (24.05.2021): e2101713118. http://dx.doi.org/10.1073/pnas.2101713118.
Pełny tekst źródłaDelfin-Riela, Triana, Martín Rossotti, Romina Alvez-Rosado, Carmen Leizagoyen i Gualberto González-Sapienza. "Highly Sensitive Detection of Zika Virus Nonstructural Protein 1 in Serum Samples by a Two-Site Nanobody ELISA". Biomolecules 10, nr 12 (9.12.2020): 1652. http://dx.doi.org/10.3390/biom10121652.
Pełny tekst źródłaCook, Shelley, Shannon N. Bennett, Edward C. Holmes, Reine De Chesse, Gregory Moureau i Xavier de Lamballerie. "Isolation of a new strain of the flavivirus cell fusing agent virus in a natural mosquito population from Puerto Rico". Journal of General Virology 87, nr 4 (1.04.2006): 735–48. http://dx.doi.org/10.1099/vir.0.81475-0.
Pełny tekst źródłaGöertz, G. P., J. J. Fros, P. Miesen, C. B. F. Vogels, M. L. van der Bent, C. Geertsema, C. J. M. Koenraadt, R. P. van Rij, M. M. van Oers i G. P. Pijlman. "Noncoding Subgenomic Flavivirus RNA Is Processed by the Mosquito RNA Interference Machinery and Determines West Nile Virus Transmission by Culex pipiens Mosquitoes". Journal of Virology 90, nr 22 (31.08.2016): 10145–59. http://dx.doi.org/10.1128/jvi.00930-16.
Pełny tekst źródłaChuang, Fu-Kai, Ching-Len Liao, Ming-Kuan Hu, Yi-Lin Chiu, An-Rong Lee, Shih-Ming Huang, Yu-Lung Chiu i in. "Antiviral Activity of Compound L3 against Dengue and Zika Viruses In Vitro and In Vivo". International Journal of Molecular Sciences 21, nr 11 (5.06.2020): 4050. http://dx.doi.org/10.3390/ijms21114050.
Pełny tekst źródłaCarro, Stephen D., i Sara Cherry. "Beyond the Surface: Endocytosis of Mosquito-Borne Flaviviruses". Viruses 13, nr 1 (23.12.2020): 13. http://dx.doi.org/10.3390/v13010013.
Pełny tekst źródłaTorres, Francisco J., Rhys Parry, Leon E. Hugo, Andrii Slonchak, Natalee D. Newton, Laura J. Vet, Naphak Modhiran i in. "Reporter Flaviviruses as Tools to Demonstrate Homologous and Heterologous Superinfection Exclusion". Viruses 14, nr 7 (8.07.2022): 1501. http://dx.doi.org/10.3390/v14071501.
Pełny tekst źródłaBalingit, Jean Claude, Minh Huong Phu Ly, Mami Matsuda, Ryosuke Suzuki, Futoshi Hasebe, Kouichi Morita i Meng Ling Moi. "A Simple and High-Throughput ELISA-Based Neutralization Assay for the Determination of Anti-Flavivirus Neutralizing Antibodies". Vaccines 8, nr 2 (10.06.2020): 297. http://dx.doi.org/10.3390/vaccines8020297.
Pełny tekst źródłaHassert, Mariah, James D. Brien i Amelia K. Pinto. "T cell cross-reactivity during heterologous infection results in immunodomination and enhanced cytolytic capacity at the expense of virus-specific responses". Journal of Immunology 206, nr 1_Supplement (1.05.2021): 103.27. http://dx.doi.org/10.4049/jimmunol.206.supp.103.27.
Pełny tekst źródłaHassert, Mariah, James D. Brien i Amelia K. Pinto. "CD8+ T cell cross-reactivity during heterologous flavivirus infection results in cross-reactive immunodomination and enhanced cytolytic capacity at the expense of virus-specific responses". Journal of Immunology 204, nr 1_Supplement (1.05.2020): 95.9. http://dx.doi.org/10.4049/jimmunol.204.supp.95.9.
Pełny tekst źródłaYou, Jaehwan, Shangmei Hou, Natasha Malik-Soni, Zaikun Xu, Anil Kumar, Richard A. Rachubinski, Lori Frappier i Tom C. Hobman. "Flavivirus Infection Impairs Peroxisome Biogenesis and Early Antiviral Signaling". Journal of Virology 89, nr 24 (30.09.2015): 12349–61. http://dx.doi.org/10.1128/jvi.01365-15.
Pełny tekst źródłaSeo, Min-Goo, Hak Seon Lee, Sung-Chan Yang, Byung-Eon Noh, Tae-Kyu Kim, Wook-Gyo Lee i Hee Il Lee. "National Monitoring of Mosquito Populations and Molecular Analysis of Flavivirus in the Republic of Korea in 2020". Microorganisms 9, nr 10 (2.10.2021): 2085. http://dx.doi.org/10.3390/microorganisms9102085.
Pełny tekst źródłaVicenzi, Elisa, Isabel Pagani, Silvia Ghezzi, Sarah L. Taylor, Timothy R. Rudd, Marcelo A. Lima, Mark A. Skidmore i Edwin A. Yates. "Subverting the mechanisms of cell death: flavivirus manipulation of host cell responses to infection". Biochemical Society Transactions 46, nr 3 (20.04.2018): 609–17. http://dx.doi.org/10.1042/bst20170399.
Pełny tekst źródłaMerino-Ramos, Teresa, Ángela Vázquez-Calvo, Josefina Casas, Francisco Sobrino, Juan-Carlos Saiz i Miguel A. Martín-Acebes. "Modification of the Host Cell Lipid Metabolism Induced by Hypolipidemic Drugs Targeting the Acetyl Coenzyme A Carboxylase Impairs West Nile Virus Replication". Antimicrobial Agents and Chemotherapy 60, nr 1 (26.10.2015): 307–15. http://dx.doi.org/10.1128/aac.01578-15.
Pełny tekst źródłaMomburg, Frank, Arno Müllbacher i Mario Lobigs. "Modulation of Transporter Associated with Antigen Processing (TAP)-Mediated Peptide Import into the Endoplasmic Reticulum by Flavivirus Infection". Journal of Virology 75, nr 12 (15.06.2001): 5663–71. http://dx.doi.org/10.1128/jvi.75.12.5663-5671.2001.
Pełny tekst źródłaArias-Arias, Jorge L., Derek J. MacPherson, Maureen E. Hill, Jeanne A. Hardy i Rodrigo Mora-Rodríguez. "A fluorescence-activatable reporter of flavivirus NS2B–NS3 protease activity enables live imaging of infection in single cells and viral plaques". Journal of Biological Chemistry 295, nr 8 (9.01.2020): 2212–26. http://dx.doi.org/10.1074/jbc.ra119.011319.
Pełny tekst źródłaPetruccelli, Angela, Tiziana Zottola, Gianmarco Ferrara, Valentina Iovane, Cristina Di Russo, Ugo Pagnini i Serena Montagnaro. "West Nile Virus and Related Flavivirus in European Wild Boar (Sus scrofa), Latium Region, Italy: A Retrospective Study". Animals 10, nr 3 (16.03.2020): 494. http://dx.doi.org/10.3390/ani10030494.
Pełny tekst źródłaEvangelista, Julio, Cristhopher Cruz, Carolina Guevara, Helvio Astete, Cristiam Carey, Tadeusz J. Kochel, Amy C. Morrison, Maya Williams, Eric S. Halsey i Brett M. Forshey. "Characterization of a novel flavivirus isolated from Culex (Melanoconion) ocossa mosquitoes from Iquitos, Peru". Journal of General Virology 94, nr 6 (1.06.2013): 1266–72. http://dx.doi.org/10.1099/vir.0.050575-0.
Pełny tekst źródłaKhristunova, Ekaterina, Elena Dorozhko, Elena Korotkova, Bohumil Kratochvil, Vlastimil Vyskocil i Jiri Barek. "Label-Free Electrochemical Biosensors for the Determination of Flaviviruses: Dengue, Zika, and Japanese Encephalitis". Sensors 20, nr 16 (16.08.2020): 4600. http://dx.doi.org/10.3390/s20164600.
Pełny tekst źródłaThibodeaux, Brett A., Amanda N. Panella i John T. Roehrig. "Development of Human-Murine Chimeric Immunoglobulin G for Use in the Serological Detection of Human Flavivirus and Alphavirus Antibodies". Clinical and Vaccine Immunology 17, nr 10 (25.08.2010): 1617–23. http://dx.doi.org/10.1128/cvi.00097-10.
Pełny tekst źródłaCharlier, Nathalie, Pieter Leyssen, Jan Paeshuyse, Christian Drosten, Herbert Schmitz, Alfons Van Lommel, Erik De Clercq i Johan Neyts. "Infection of SCID mice with Montana Myotis leukoencephalitis virus as a model for flavivirus encephalitis". Journal of General Virology 83, nr 8 (1.08.2002): 1887–96. http://dx.doi.org/10.1099/0022-1317-83-8-1887.
Pełny tekst źródłaWan, Shengfeng, Shengbo Cao, Xugang Wang, Yanfei Zhou, Weidong Yan, Xinbin Gu, Tzyy-Choou Wu i Xiaowu Pang. "Evaluation of Vertebrate-Specific Replication-Defective Zika Virus, a Novel Single-Cycle Arbovirus Vaccine, in a Mouse Model". Vaccines 9, nr 4 (1.04.2021): 338. http://dx.doi.org/10.3390/vaccines9040338.
Pełny tekst źródłaHoward-Jones, Annaleise R., David Pham, Rebecca Sparks, Susan Maddocks, Dominic E. Dwyer, Jen Kok i Kerri Basile. "Arthropod-Borne Flaviviruses in Pregnancy". Microorganisms 11, nr 2 (8.02.2023): 433. http://dx.doi.org/10.3390/microorganisms11020433.
Pełny tekst źródłaGwon, Yong-Dae, Mårten Strand, Richard Lindqvist, Emma Nilsson, Michael Saleeb, Mikael Elofsson, Anna K. Överby i Magnus Evander. "Antiviral Activity of Benzavir-2 against Emerging Flaviviruses". Viruses 12, nr 3 (22.03.2020): 351. http://dx.doi.org/10.3390/v12030351.
Pełny tekst źródła