Gotowa bibliografia na temat „Flavivirus Infection”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Flavivirus Infection”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Flavivirus Infection"
Fontoura, Marina Alves, Rebeca Fróes Rocha i Rafael Elias Marques. "Neutrophil Recruitment and Participation in Severe Diseases Caused by Flavivirus Infection". Life 11, nr 7 (20.07.2021): 717. http://dx.doi.org/10.3390/life11070717.
Pełny tekst źródłaMusso, Didier, i Philippe Desprès. "Serological Diagnosis of Flavivirus-Associated Human Infections". Diagnostics 10, nr 5 (14.05.2020): 302. http://dx.doi.org/10.3390/diagnostics10050302.
Pełny tekst źródłaWu, Bingan, Zhongtian Qi i Xijing Qian. "Recent Advancements in Mosquito-Borne Flavivirus Vaccine Development". Viruses 15, nr 4 (23.03.2023): 813. http://dx.doi.org/10.3390/v15040813.
Pełny tekst źródłaQiu, Yang, Yan-Peng Xu, Miao Wang, Meng Miao, Hui Zhou, Jiuyue Xu, Jing Kong i in. "Flavivirus induces and antagonizes antiviral RNA interference in both mammals and mosquitoes". Science Advances 6, nr 6 (luty 2020): eaax7989. http://dx.doi.org/10.1126/sciadv.aax7989.
Pełny tekst źródłaKe, Po-Yuan. "The Multifaceted Roles of Autophagy in Flavivirus-Host Interactions". International Journal of Molecular Sciences 19, nr 12 (7.12.2018): 3940. http://dx.doi.org/10.3390/ijms19123940.
Pełny tekst źródłaZhao, Rong, Meiyue Wang, Jing Cao, Jing Shen, Xin Zhou, Deping Wang i Jimin Cao. "Flavivirus: From Structure to Therapeutics Development". Life 11, nr 7 (25.06.2021): 615. http://dx.doi.org/10.3390/life11070615.
Pełny tekst źródłaLedermann, Jeremy P., Maria A. Lorono-Pino, Christine Ellis, Kali D. Saxton-Shaw, Bradley J. Blitvich, Barry J. Beaty, Richard A. Bowen i Ann M. Powers. "Evaluation of Widely Used Diagnostic Tests To Detect West Nile Virus Infections in Horses Previously Infected with St. Louis Encephalitis Virus or Dengue Virus Type 2". Clinical and Vaccine Immunology 18, nr 4 (23.02.2011): 580–87. http://dx.doi.org/10.1128/cvi.00201-10.
Pełny tekst źródłaLiao, Ching-Len, Yi-Ling Lin, Bi-Ching Wu, Chang-Huei Tsao, Mei-Chuan Wang, Chiu-I. Liu, Yue-Ling Huang, Jui-Hui Chen, Jia-Pey Wang i Li-Kuang Chen. "Salicylates Inhibit Flavivirus Replication Independently of Blocking Nuclear Factor Kappa B Activation". Journal of Virology 75, nr 17 (1.09.2001): 7828–39. http://dx.doi.org/10.1128/jvi.75.17.7828-7839.2001.
Pełny tekst źródłaWahaab, Abdul, Bahar E. Mustafa, Muddassar Hameed, Nigel J. Stevenson, Muhammad Naveed Anwar, Ke Liu, Jianchao Wei, Yafeng Qiu i Zhiyong Ma. "Potential Role of Flavivirus NS2B-NS3 Proteases in Viral Pathogenesis and Anti-flavivirus Drug Discovery Employing Animal Cells and Models: A Review". Viruses 14, nr 1 (28.12.2021): 44. http://dx.doi.org/10.3390/v14010044.
Pełny tekst źródłaHabarugira, Gervais, Jasmin Moran, Jessica J. Harrison, Sally R. Isberg, Jody Hobson-Peters, Roy A. Hall i Helle Bielefeldt-Ohmann. "Evidence of Infection with Zoonotic Mosquito-Borne Flaviviruses in Saltwater Crocodiles (Crocodylus porosus) in Northern Australia". Viruses 14, nr 5 (21.05.2022): 1106. http://dx.doi.org/10.3390/v14051106.
Pełny tekst źródłaRozprawy doktorskie na temat "Flavivirus Infection"
Gollins, S. W. "Mechanisms of flavivirus neutralization and cellular infection". Thesis, University of Oxford, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.355752.
Pełny tekst źródłaDejarnac, Ophélie. "Molecular and cellular basis of phosphatidylserine receptors mediated flavivirus infection". Thesis, Sorbonne Paris Cité, 2017. http://www.theses.fr/2017USPCC297/document.
Pełny tekst źródłaDengue virus (DENV) and ZIKA virus (ZIKV) are two mosquito-borne viruses responsible for important diseases in humans. Since there is currently no vaccine neither antiviral treatment available against these human pathogens, they are two major health concerns. The molecular basis of DENV and ZIKV host cell interactions leading to virus entry are poorly understood, hampering the discovery of new targets for antiviral intervention. Our laboratory recently discovered that TIM (TIM-1 and TIM-4) and TAM (Tyro3 and Axl) proteins, two receptor families that contribute to the phosphatidylserine (PtdSer)-dependent phagocytic removal of apoptotic cells, are DENV entry factors. TIM and TAM receptors mediate DENV infection by interacting with virion-associated PtdSer through a mechanism similar to the recognition and engulfment of apoptotic cells by phagocytes (viral apoptotic mimicry). The general objective of my PhD was to establish a detailed understanding of the molecular mechanisms by which TIM-1 and Axl mediated infection. Using live imaging, we demonstrated that TIM-1 and DENV are co-internalised and TIM-1 play an active role during DENV endocytosis. We showed that TIM-1 cytoplasmic domain is essential for DENV internalization, especially, we identified two lysine residues that are essential for TIM-1 ubiquitination and DENV endocytosis. Proteomic analysis of TIM-1 interacting partners identified STAM, a member of the ESCRT-0 complex involved in intracellular sorting of ubiquitinated cargos, as an essential host factor for DENV infection. Collectively our results establish TIM-1 as the first identified DENV bona fide receptor.Identifying ZIKV entry factors represents a major challenge in the understanding of ZIKV tropism and pathogenesis. We showed that Axl is responsible for ZIKV infection of microglial cells and astrocytes in the human developing brain and primary fibroblasts in human skin, suggesting an important role of this receptor during ZIKV life cycle. We also highlighted the dual role of the Axl receptor in ZIKV infection, which simultaneously promotes viral entry and dampens the innate immune response to facilitate a post entry step of the ZIKV life cycle. In conclusion, this work provided new insights in our understanding of the DENV and ZIKV entry program. Both viruses engage phospholipid receptors for their infectious entry, providing a rational to ascertain therapeutic strategies targeting virion-associated phospholipids
Nguyen, Jennifer B. "Molecular Mechanisms of Host-Pathogen Interactions in Flavivirus and Hookworm Infection". Thesis, Yale University, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3580786.
Pełny tekst źródłaMicrobial pathogens and their hosts have evolved complex adaptations to ensure their individual survival, resulting in a so-called "molecular arms race." While hosts may have acquired diverse mechanisms to protect themselves from the microbial invader, pathogens have developed elaborate strategies to evade and subvert these defenses. Viruses and hookworms are important pathogens which have evolved to successfully invade and infect their human hosts. Although structural biology has provided significant mechanistic insight into these processes of invasion, many specific host-pathogen interactions and their dynamics have not been well studied or characterized.
The work presented in this dissertation clarifies the mechanisms of cellular entry of one particular family of viruses, the flaviviruses, and discusses strategies for viral clearance by host cells. Additional insight into the role of a cytoplasmic DNA sensor, LRRFIP1, in mediating an innate immune response to non-flavivirus microbial infection is presented. Finally, strategies for the development of small-molecule or peptide inhibitors of virus entry and hookworm infection are proposed.
Ottendorfer, Christy L. "Impact of West Nile virus on the natural history of St. Louis encephalitis virus in Florida". [Tampa, Fla] : University of South Florida, 2008. http://purl.fcla.edu/usf/dc/et/SFE0002452.
Pełny tekst źródłaDesole, Giovanna. "Comparative analysis of Zika virus and other Flavivirus infection in human neural cells". Doctoral thesis, Università degli studi di Padova, 2018. http://hdl.handle.net/11577/3424985.
Pełny tekst źródłaPresupposti dello studio: Zika virus (ZIKV), West Nile virus (WNV), dengue virus (DENV) e Usutu virus (USUV) sono trasmessi da zanzare ed appartengono al genere Flavivirus della famiglia Flaviviridae. L’infezione da ZIKV è associata a microcefalia fetale e sindrome di Guillan-Barrè; WNV può causare una grave sindrome neuroinvasiva nell’anziano e nei soggetti immunocompromessi; l’infezione da DENV raramente si associa a complicazioni neurologiche; USUV può causare una sindrome neuroinvasiva fatale in diverse specie di uccelli, è stato dimostrato che può infettare pure l’uomo, ma la sua patogenicità resta ancora da chiarire. Scopo: Alla luce della recente epidemia di ZIKV in America e di una probabile associazione tra l’infezione da ZIKV e lo sviluppo di microcefalia fetale, lo scopo di questo studio è stato confrontare l’infezione da ZIKV sulle cellule neurali umane con l’infezione da WNV, DENV e USUV. A tal fine, la cinetica di replicazione, l’effetto citopatico e l’immunità innata indotta dall’infezione virale sono state analizzate in cellule staminali pluripotenti indotte (hiPSCs), cellule staminali neurali derivate da iPSCs e neuroni. Materiali e metodi: Le NSCs ed i neuroni sono stati differenziati da hiPSCs. I diversi tipi cellulari sono stati infettati con l’isolato di ZIKV lignaggio asiatico (KU853013), WNV lignaggio 2 (KF179640), DENV sierotipo 2 e USUV lignaggio 1 europeo (AY453411). La carica virale è stata valutata a diversi tempi dall’infezione mediante qRT-PCR e TCID50, il livello di espressione dei geni coinvolti nell’immunità innata è stato analizzato mediante qRT-PCR e l’espressione dei markers di differenziamento cellulare mediante IF e qRT-PCR, la sopravvivenza cellulare e l’apoptosi mediante il saggio MTT e analisi dell’attivazione di caspasi-3. L’impatto dell’infezione da ZIKV sull’embriogenesi e la neurogenesi è stato valutato infettando le hiPSCs e le NSCs durante il differenziamento neurale e durante la formazione dei corpi embrioidi. Risultati: ZIKV era in grado di infettare e replicare efficientemente nelle NSCs, nei neuroni e nelle hiPSCs, causando un tipico effetto citopatico e morte cellulare per apoptosi. L’infezione ha indotto un significativo aumento dell’espressione dei geni dell’immunità innata, in particolare dei geni MDA5 (the cellular pattern recognition receptor (PRR) IFH1 gene), IFIT1 (IFN-induced protein with tetratricopeptide repeats 1) e IFIT2. I corpi embrioidi sono stati distrutti dal virus e le hiPSCs e le NSCs infettate sono morte prima di completare il differenziamento neurale. L’efficienza di replicazione di ZIKV nelle NSCs era maggiore rispetto a quella di DENV-2 e USUV, ma minore rispetto al WNV. Infatti, WNV replicava in modo più efficiente, induceva una maggiore morte cellulare e stimolava una più elevata risposta antivirale rispetto a ZIKV nei diversi tipi cellulari. Conclusione: ZIKV infetta e replica nelle NSCs, inducendo morte cellulare e impedendo lo sviluppo neurale, ma in modo meno efficiente rispetto al WNV. E’ probabile quindi che l’infezione di altri tipi cellulari sia determinante per il danno al sistema nervoso fetale indotto in modo specifico da ZIKV.
Rückert, Claudia. "Alphavirus and flavivirus infection of Ixodes tick cell lines : an insight into tick antiviral immunity". Thesis, University of Edinburgh, 2014. http://hdl.handle.net/1842/10063.
Pełny tekst źródłaYouseff, Brian. "The Role of Tumor Necrosis Factor Receptor-Associated Factor 6 in Tick-Borne Flavivirus Infection". University of Toledo Health Science Campus / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=mco155691388498993.
Pełny tekst źródłaPettersson, John H. O. "The Origin of the Genus Flavivirus and the Ecology of Tick-Borne Pathogens". Doctoral thesis, Uppsala universitet, Systematisk biologi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-211090.
Pełny tekst źródłaCourtney, Sean C. "Functional Analysis of Host Cell Proteins and Stress Responses that Inhibit West Nile Virus Infection". Digital Archive @ GSU, 2011. http://digitalarchive.gsu.edu/biology_diss/101.
Pełny tekst źródłaRiccetti, Silvia. "In vitro modelling of patient-specific susceptibility to neurotropic flavivirus infection by using induced pluripotent stem cells". Doctoral thesis, Università degli studi di Padova, 2019. http://hdl.handle.net/11577/3422230.
Pełny tekst źródłaKsiążki na temat "Flavivirus Infection"
Gregory, Bock, Goode Jamie, Novartis Foundation i Novartis Institute for Tropical Diseases., red. New treatment strategies for dengue and other flaviviral diseases. Chichester: John Wiley & Sons, 2006.
Znajdź pełny tekst źródłaShi, Pei-Yong. Molecular virology and control of flaviviruses. Norfolk, UK: Caister Academic Press, 2012.
Znajdź pełny tekst źródłaMonath, Thomas P., i J. Erin Staples. Yellow fever. Oxford University Press, 2011. http://dx.doi.org/10.1093/med/9780198570028.003.0045.
Pełny tekst źródłaMesquita, Emersom C., i Fernando A. Bozza. Diagnosis and management of viral haemorrhagic fevers in the ICU. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0293.
Pełny tekst źródłaKeshav, Satish, i Palak Trivedi. Viral hepatitis. Redaktorzy Patrick Davey i David Sprigings. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199568741.003.0212.
Pełny tekst źródłaКазачинская, Е. И. ВИРУС ДЕНГЕ. Академическое изд-во «Гео», 2021. http://dx.doi.org/10.21782/b978-5-6043022-6-2.
Pełny tekst źródłaOsterholm, Michael T., i Mark Olshaker. Deadliest Enemy: Our War Against Killer Germs. Hodder & Stoughton, 2020.
Znajdź pełny tekst źródłaOsterholm, Michael T., i Mark Olshaker. Deadliest Enemy: Our War Against Killer Germs. Little Brown & Company, 2017.
Znajdź pełny tekst źródłaCzęści książek na temat "Flavivirus Infection"
El Adl, Salma, i Alaa Badawi. "Nuclear Receptor Ligands in Flavivirus Infection Control". W Nuclear Receptors, 483–502. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-78315-0_18.
Pełny tekst źródłaCampos, Rafael K., Mariano A. Garcia-Blanco i Shelton S. Bradrick. "Roles of Pro-viral Host Factors in Mosquito-Borne Flavivirus Infections". W Roles of Host Gene and Non-coding RNA Expression in Virus Infection, 43–67. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/82_2017_26.
Pełny tekst źródłaReid, Hugh W., Herbert Weissenböck i Károly Erdélyi. "Flavivirus Infections". W Infectious Diseases of Wild Mammals and Birds in Europe, 128–45. Oxford, UK: Wiley-Blackwell, 2012. http://dx.doi.org/10.1002/9781118342442.ch9.
Pełny tekst źródłaTan, Kah Hin, Kitti Chan Wing Ki, Satoru Watanabe, Subhash G. Vasudevan i Manoj Krishnan. "Cell-Based Flavivirus Infection (CFI) Assay for the Evaluation of Dengue Antiviral Candidates Using High-Content Imaging". W Dengue, 99–109. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0348-1_7.
Pełny tekst źródłaJohnson, Barbara W. "Neurotropic Flaviviruses". W Neurotropic Viral Infections, 229–58. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-33133-1_9.
Pełny tekst źródłaBrinton, M. "Flaviviruses". W Clinical and Molecular Aspects of Neurotropic Virus Infection, 69–99. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-1675-6_3.
Pełny tekst źródłaThomas, Stephen J., Timothy P. Endy i Alan L. Rothman. "Flaviviruses: Dengue". W Viral Infections of Humans, 351–81. Boston, MA: Springer US, 2014. http://dx.doi.org/10.1007/978-1-4899-7448-8_15.
Pełny tekst źródłaThomas, Stephen J., Timothy P. Endy i Alan L. Rothman. "Flaviviruses: Dengue". W Viral Infections of Humans, 1–65. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-4939-9544-8_15-1.
Pełny tekst źródłaGriffin, Diane E. "Alphaviruses, Flaviviruses, and Bunyaviruses". W Infectious Agents and Pathogenesis, 255–74. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4684-5886-2_13.
Pełny tekst źródłaModis, Yorgo, i Vinod Nayak. "Molecular Mechanisms of Flaviviral Membrane Fusion". W West Nile Encephalitis Virus Infection, 265–86. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-79840-0_12.
Pełny tekst źródłaStreszczenia konferencji na temat "Flavivirus Infection"
Rodrigues, Francisco, Andre Campino i Patricia Coelho. "Epidemiology of dengue in Portugal – a portrait". W III SEVEN INTERNATIONAL MULTIDISCIPLINARY CONGRESS. Seven Congress, 2023. http://dx.doi.org/10.56238/seveniiimulti2023-226.
Pełny tekst źródła