Artykuły w czasopismach na temat „Flame particle”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Flame particle”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Vemury, Srinivas, Sotiris E. Pratsinis i Lowinn Kibbey. "Electrically Controlled Flame Synthesis of Nanophase TiO2, SiO2, and SnO2 Powders". Journal of Materials Research 12, nr 4 (kwiecień 1997): 1031–42. http://dx.doi.org/10.1557/jmr.1997.0144.
Pełny tekst źródłaZhang, Jia-Rui, Zhi-Xun Xia, Chuan-Bo Fang, Li-Kun Ma, Yun-Chao Feng, Stein Oliver i Kronenburg Andreas. "Numerical simulation of aluminum dust counterflow flames". Acta Physica Sinica 71, nr 7 (2022): 074702. http://dx.doi.org/10.7498/aps.71.20211664.
Pełny tekst źródłaJeon, Joonho, Noah Bock, David B. Kittelson i William F. Northrop. "Correlation of nanoparticle size distribution features to spatiotemporal flame luminosity in gasoline direct injection engines". International Journal of Engine Research 21, nr 7 (12.09.2018): 1107–17. http://dx.doi.org/10.1177/1468087418798468.
Pełny tekst źródłaBarkley, Thomas K., Jenna E. Vastano, James R. Applegate i Smitesh D. Bakrania. "Combustion Synthesis of Fe-Incorporated SnO2Nanoparticles Using Organometallic Precursor Combination". Advances in Materials Science and Engineering 2012 (2012): 1–8. http://dx.doi.org/10.1155/2012/685754.
Pełny tekst źródłaDufner, D. C., S. Danczyk i M. Wooldridge. "Characterization Of SiOx Smoke Particles by Electron Energy Loss Spectroscopy and Energy-Filtering Imaging". Microscopy and Microanalysis 5, S2 (sierpień 1999): 638–39. http://dx.doi.org/10.1017/s1431927600016512.
Pełny tekst źródłaXie, Qing, Siheng Yang, Hao Cheng, Chi Zhang i Zhuyin Ren. "Predicting the ignition sequences in a separated stratified swirling spray flame with stochastic flame particle tracking". Journal of the Global Power and Propulsion Society 6 (12.10.2022): 279–89. http://dx.doi.org/10.33737/jgpps/153495.
Pełny tekst źródłaZhao, Tingyu, Junhua Fang i Zhen Huang. "The evolution of soot morphology for the maturation of nascent particle in a turbulent lifted jet flame". Thermal Science, nr 00 (2022): 57. http://dx.doi.org/10.2298/tsci211116057z.
Pełny tekst źródłaNi, Jian, i Hong Xia Liu. "Research on Flame Simulation Based on Improved Particle System and the Texture Mapping". Applied Mechanics and Materials 44-47 (grudzień 2010): 3601–5. http://dx.doi.org/10.4028/www.scientific.net/amm.44-47.3601.
Pełny tekst źródłaKalman, Joseph, Nick G. Glumac i Herman Krier. "Experimental Study of Constant Volume Sulfur Dust Explosions". Journal of Combustion 2015 (2015): 1–11. http://dx.doi.org/10.1155/2015/817259.
Pełny tekst źródłaWang, Chaoyang, Guangtong Tang, Huibo Yan, Lujiang Li, Xiaopei Yan, Zhicong Li i Chun Lou. "Investigation of Thermal Radiation from Soot Particles and Gases in Oxy-Combustion Counter-Flow Flames". Processes 9, nr 10 (30.09.2021): 1756. http://dx.doi.org/10.3390/pr9101756.
Pełny tekst źródłaFomenko, Elena, Igor Altman i Igor E. Agranovski. "Effect of External Charging on Nanoparticle Formation in a Flame". Materials 14, nr 11 (28.05.2021): 2891. http://dx.doi.org/10.3390/ma14112891.
Pełny tekst źródłaRodriguez-Fernandez, Helena, Shruthi Dasappa, Kaylin Dones Sabado i Joaquin Camacho. "Production of Carbon Black in Turbulent Spray Flames of Coal Tar Distillates". Applied Sciences 11, nr 21 (26.10.2021): 10001. http://dx.doi.org/10.3390/app112110001.
Pełny tekst źródłaChong, Cheng Tung, i Simone Hochgreb. "Spray Flame Study Using a Model Gas Turbine Swirl Burner". Applied Mechanics and Materials 316-317 (kwiecień 2013): 17–22. http://dx.doi.org/10.4028/www.scientific.net/amm.316-317.17.
Pełny tekst źródłaAhn, Kang Ho, Jung Ho Ahn, K. S. Jeon i Yong Ho Choa. "Synthesis of Ultra-Fine Iron-Oxide Nano-Particles in a Diffusion Flame with Electro-Spraying Assistance". Materials Science Forum 449-452 (marzec 2004): 1169–72. http://dx.doi.org/10.4028/www.scientific.net/msf.449-452.1169.
Pełny tekst źródłaFinney, Mark A., Jack D. Cohen, Jason M. Forthofer, Sara S. McAllister, Michael J. Gollner, Daniel J. Gorham, Kozo Saito, Nelson K. Akafuah, Brittany A. Adam i Justin D. English. "Role of buoyant flame dynamics in wildfire spread". Proceedings of the National Academy of Sciences 112, nr 32 (16.07.2015): 9833–38. http://dx.doi.org/10.1073/pnas.1504498112.
Pełny tekst źródłaSheen, Sowon, Jeonghoon Lee i Chang Gyu Woo. "Application of coflow premixed flame for generating aggregate silica particles and its limitation". AIP Advances 12, nr 9 (1.09.2022): 095007. http://dx.doi.org/10.1063/5.0082172.
Pełny tekst źródłaXu, Wu, i Yong Jiang. "Combustion Inhibition of Aluminum–Methane–Air Flames by Fine NaCl Particles". Energies 11, nr 11 (14.11.2018): 3147. http://dx.doi.org/10.3390/en11113147.
Pełny tekst źródłaYao, Jiantao, Hui Dong, Yan Li i Xiao Li. "Influence of Inter-Particle Bonding on Compression Performance of Porous Mo Deposited by Flame Spraying of Semi-Molten Particles". Coatings 9, nr 3 (28.02.2019): 158. http://dx.doi.org/10.3390/coatings9030158.
Pełny tekst źródłaHsu, Ching Min, Dickson Bwana Mosiria i Wei Chih Jhan. "Flow and Temperature Characteristics of a 15° Backward-Inclined Jet Flame in Crossflow". Energies 12, nr 1 (31.12.2018): 132. http://dx.doi.org/10.3390/en12010132.
Pełny tekst źródłaForestieri, Sara D., Taylor M. Helgestad, Andrew T. Lambe, Lindsay Renbaum-Wolff, Daniel A. Lack, Paola Massoli, Eben S. Cross i in. "Measurement and modeling of the multiwavelength optical properties of uncoated flame-generated soot". Atmospheric Chemistry and Physics 18, nr 16 (22.08.2018): 12141–59. http://dx.doi.org/10.5194/acp-18-12141-2018.
Pełny tekst źródłaBocz, Katalin, Tamás Krain i György Marosi. "Effect of Particle Size of Additives on the Flammability and Mechanical Properties of Intumescent Flame Retarded Polypropylene Compounds". International Journal of Polymer Science 2015 (2015): 1–7. http://dx.doi.org/10.1155/2015/493710.
Pełny tekst źródłaShelar, Vaibhav, D. Davidson Jebaseelan, C. P. Karthikeyan i Joseph Stokes. "Finite Element Analysis of Particle Impact on Substrates Using HVOF Thermal Spray Coating". Applied Mechanics and Materials 852 (wrzesień 2016): 446–51. http://dx.doi.org/10.4028/www.scientific.net/amm.852.446.
Pełny tekst źródłaZhang, Xu, Dan Li, Hua Xie i Zhi Liang Zhang. "Study of Chemical Control Synthesis on Aluminum Salt Flame Retardants Powders". Advanced Materials Research 915-916 (kwiecień 2014): 515–18. http://dx.doi.org/10.4028/www.scientific.net/amr.915-916.515.
Pełny tekst źródłaGlumac, N. G., Y.-J. Chen i G. Skandan. "Diagnostics and Modeling of Nanopowder Synthesis in Low Pressure Flames". Journal of Materials Research 13, nr 9 (wrzesień 1998): 2572–79. http://dx.doi.org/10.1557/jmr.1998.0359.
Pełny tekst źródłaWang, Wei, Chen Peng, Hanyu Mi, Chuanliang Chen i Deliang Zeng. "Furnace flame recognition based on improved particle swarm optimization algorithm". Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 234, nr 8 (12.02.2020): 888–99. http://dx.doi.org/10.1177/0959651819898578.
Pełny tekst źródłaTeleki, A., S. E. Pratsinis, K. Wegner, R. Jossen i F. Krumeich. "Flame-coating of titania particles with silica". Journal of Materials Research 20, nr 5 (maj 2005): 1336–47. http://dx.doi.org/10.1557/jmr.2005.0160.
Pełny tekst źródłaKryukov, Aleksey, i Vladimir Malinin. "PRESSURE DEPENDENCE OF FLAME ZONE SIZE OF SINGLE ALUMINIUM PARTICLES". Perm National Research Polytechnic University Aerospace Engineering Bulletin, nr 60 (2020): 45–54. http://dx.doi.org/10.15593/2224-9982/2020.60.05.
Pełny tekst źródłaWang, Lei, Hong Jie Wang, Hui Wang, Lan Jian Nei, Fei Xiang Lui i Xiao Hui Yang. "Flame Temperature Distribution and SiO2 Particles Distribution in Oxyhydrogen Flame". Key Engineering Materials 726 (styczeń 2017): 424–28. http://dx.doi.org/10.4028/www.scientific.net/kem.726.424.
Pełny tekst źródłaChe, Shenglei, i Norimasa Sakamoto. "Preparation and Formation Mechanism of Micrometer-Sized Spherical Single Crystal Particles of Perovskite Oxides by Flame Fusion". Key Engineering Materials 320 (wrzesień 2006): 201–4. http://dx.doi.org/10.4028/www.scientific.net/kem.320.201.
Pełny tekst źródłaAhn, Kang Ho, Jung Ho Ahn, K. S. Jeon i Yong Ho Choa. "Characteristics of Fe2O3/SiO2 Nano-Composites Particles Prepared by a Diffusion Flame with Premixed Precursor". Materials Science Forum 449-452 (marzec 2004): 1173–76. http://dx.doi.org/10.4028/www.scientific.net/msf.449-452.1173.
Pełny tekst źródłaYu, Jianxing, Xin Liu, Yang Yu, Haoda Li, Pengfei Liu, Ruoke Sun, Limin Wang i Pengfei Li. "Numerical Analysis of High-Velocity Oxygen Fuel Thermal-Spray Process for Fe-Based Amorphous Coatings". Coatings 11, nr 12 (13.12.2021): 1533. http://dx.doi.org/10.3390/coatings11121533.
Pełny tekst źródłaChambers, Jessica, Hardeo M. Chin, Alexei Y. Poludnenko, Vadim N. Gamezo i Kareem A. Ahmed. "Spontaneous runaway of fast turbulent flames for turbulence-induced deflagration-to-detonation transition". Physics of Fluids 34, nr 1 (styczeń 2022): 015114. http://dx.doi.org/10.1063/5.0078556.
Pełny tekst źródłaXue, Rui, i Hou Qian Xu. "Investigation of Particle Flow Field in Pyrotechnic Flame Based on Particle Image and Particle Velocity". Advanced Materials Research 962-965 (czerwiec 2014): 2789–96. http://dx.doi.org/10.4028/www.scientific.net/amr.962-965.2789.
Pełny tekst źródłaLiu, Xiao, Hongtao Liu, Quan Zhang, Xuliang Zhang, Ning Li i Zhiyuan Wang. "Numerical Simulation of Gas-solid Jet Fire in Natural Gas Pipeline Leakage". Journal of Physics: Conference Series 2399, nr 1 (1.12.2022): 012014. http://dx.doi.org/10.1088/1742-6596/2399/1/012014.
Pełny tekst źródłaBidabadi, Mehdi, Sadegh Sadeghi, Pedram Panahifar, Davood Toghraie i Alireza Rahbari. "An asymptotic analysis for detailed mathematical modeling of counter-flow non-premixed multi-zone laminar flames fueled by lycopodium particles". International Journal of Numerical Methods for Heat & Fluid Flow 30, nr 4 (11.07.2019): 2137–68. http://dx.doi.org/10.1108/hff-11-2018-0617.
Pełny tekst źródłaWan, Y. P., V. Prasad, G. X. Wang, S. Sampath i J. R. Fincke. "Model and Powder Particle Heating, Melting, Resolidification, and Evaporation in Plasma Spraying Processes". Journal of Heat Transfer 121, nr 3 (1.08.1999): 691–99. http://dx.doi.org/10.1115/1.2826034.
Pełny tekst źródłaGuo, P., S. Zang, B. Ge i Y. Tian. "Investigation of nitrogen-diluted syngas non-premixed flames measured by planar laser-induced fluorescence of hydroxyl and particle image velocimetry". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 225, nr 7 (4.05.2011): 1672–80. http://dx.doi.org/10.1177/0954406211399515.
Pełny tekst źródłaXiao, Yinli, Zhibo Cao i Changwu Wang. "Flame stability limits of premixed low-swirl combustion". Advances in Mechanical Engineering 10, nr 9 (wrzesień 2018): 168781401879087. http://dx.doi.org/10.1177/1687814018790878.
Pełny tekst źródłaPratsinis, Sotiris E. "Flame synthesis of nanosize particles: Precise control of particle size". Journal of Aerosol Science 27 (wrzesień 1996): S153—S154. http://dx.doi.org/10.1016/0021-8502(96)00149-8.
Pełny tekst źródłaLi, S. C., N. Ilincic i F. A. Williams. "Reduction of NOx Formation by Water Sprays in Strained Two-Stage Flames". Journal of Engineering for Gas Turbines and Power 119, nr 4 (1.10.1997): 836–43. http://dx.doi.org/10.1115/1.2817062.
Pełny tekst źródłaShin, Jun Su, i Hong Gye Sung. "Theoretical Study on Premixed Flames of Nano Aluminum Particles and Water Mixture". Applied Mechanics and Materials 284-287 (styczeń 2013): 567–71. http://dx.doi.org/10.4028/www.scientific.net/amm.284-287.567.
Pełny tekst źródłaSimmler, Mira, Manuel Meier i Hermann Nirschl. "Characterization of Fractal Structures by Spray Flame Synthesis Using X-ray Scattering". Materials 15, nr 6 (14.03.2022): 2124. http://dx.doi.org/10.3390/ma15062124.
Pełny tekst źródłaDaniele, S., J. Mantzaras, P. Jansohn, A. Denisov i K. Boulouchos. "Flame front/turbulence interaction for syngas fuels in the thin reaction zones regime: turbulent and stretched laminar flame speeds at elevated pressures and temperatures". Journal of Fluid Mechanics 724 (29.04.2013): 36–68. http://dx.doi.org/10.1017/jfm.2013.141.
Pełny tekst źródłaIshtiaq, Atif, Sheeraz Ahmed, Muhammad Fahad Khan, Farhan Aadil, Muazzam Maqsood i Salabat Khan. "Intelligent clustering using moth flame optimizer for vehicular ad hoc networks". International Journal of Distributed Sensor Networks 15, nr 1 (styczeń 2019): 155014771882446. http://dx.doi.org/10.1177/1550147718824460.
Pełny tekst źródłaMcMillin, Brian K., Pratim Biswas i Michael R. Zachariah. "In situ characterization of vapor phase growth of iron oxide-silica nanocomposites: Part I. 2-D planar laser-induced fluorescence and Mie imaging". Journal of Materials Research 11, nr 6 (czerwiec 1996): 1552–61. http://dx.doi.org/10.1557/jmr.1996.0194.
Pełny tekst źródłaDani Nandiyanto, Asep Bayu, Yusuke Kito, Tomoyuki Hirano, Risti Ragadhita, Phong Hoai Le i Takashi Ogi. "Spherical submicron YAG:Ce particles with controllable particle outer diameters and crystallite sizes and their photoluminescence properties". RSC Advances 11, nr 48 (2021): 30305–14. http://dx.doi.org/10.1039/d1ra04800g.
Pełny tekst źródłaSkenderović, Ivan, Gregor Kotalczyk i Frank Kruis. "Dual Population Balance Monte Carlo Simulation of Particle Synthesis by Flame Spray Pyrolysis". Processes 6, nr 12 (6.12.2018): 253. http://dx.doi.org/10.3390/pr6120253.
Pełny tekst źródłaLee, Gyo Woo, i Shang Min Choi. "Crystalline Phases and Particle Characteristics of the Combustion-Synthesized TiO2 Nanoparticles". Materials Science Forum 544-545 (maj 2007): 39–42. http://dx.doi.org/10.4028/www.scientific.net/msf.544-545.39.
Pełny tekst źródłaSidorov, A. E., i V. G. Shevchuk. "Laminar flame in fine-particle dusts". Combustion, Explosion, and Shock Waves 47, nr 5 (wrzesień 2011): 518–22. http://dx.doi.org/10.1134/s0010508211050042.
Pełny tekst źródłaDe Iuliis, Silvana, Roberto Dondè i Igor Altman. "Effect of Laser Irradiation on Emissivity of Flame-Generated Nanooxides". Materials 14, nr 9 (29.04.2021): 2303. http://dx.doi.org/10.3390/ma14092303.
Pełny tekst źródła