Gotowa bibliografia na temat „Flame Particle Tracking”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Flame Particle Tracking”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Flame Particle Tracking"
Xie, Qing, Siheng Yang, Hao Cheng, Chi Zhang i Zhuyin Ren. "Predicting the ignition sequences in a separated stratified swirling spray flame with stochastic flame particle tracking". Journal of the Global Power and Propulsion Society 6 (12.10.2022): 279–89. http://dx.doi.org/10.33737/jgpps/153495.
Pełny tekst źródłaEchekki, T., i M. G. Mungal. "Particle Tracking in a Laminar Premixed Flame". Physics of Fluids A: Fluid Dynamics 2, nr 9 (wrzesień 1990): 1523. http://dx.doi.org/10.1063/1.4738844.
Pełny tekst źródłaUranakara, Harshavardhana A., Swetaprovo Chaudhuri, Himanshu L. Dave, Paul G. Arias i Hong G. Im. "A flame particle tracking analysis of turbulence–chemistry interaction in hydrogen–air premixed flames". Combustion and Flame 163 (styczeń 2016): 220–40. http://dx.doi.org/10.1016/j.combustflame.2015.09.033.
Pełny tekst źródłaWeber, R., A. A. F. Peters, P. P. Breithaupt i B. M. Visser. "Mathematical Modeling of Swirling Flames of Pulverized Coal: What Can Combustion Engineers Expect From Modeling?" Journal of Fluids Engineering 117, nr 2 (1.06.1995): 289–97. http://dx.doi.org/10.1115/1.2817143.
Pełny tekst źródłaXIE, Qing, Zhuyin REN i Ke WANG. "Modelling ignition probability with pairwise mixing-reaction model for flame particle tracking". Chinese Journal of Aeronautics 34, nr 5 (maj 2021): 523–34. http://dx.doi.org/10.1016/j.cja.2020.12.031.
Pełny tekst źródłaLee, K. H., i C. S. Lee. "Effects of tumble and swirl flows on turbulence scale near top dead centre in a four-valve spark ignition engine". Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 217, nr 7 (1.07.2003): 607–15. http://dx.doi.org/10.1243/095440703322114988.
Pełny tekst źródłaLewis, G. S., i B. J. Cantwell. "Instantaneous Two-Dimensional Velocity Field Measurements in a Periodic Flame Using Particle Tracking Velocimetry". Physics of Fluids 31, nr 9 (wrzesień 1988): 2388. http://dx.doi.org/10.1063/1.4738823.
Pełny tekst źródłaLiu, Kan, i David Liu. "Particle tracking velocimetry and flame front detection techniques on commercial aircraft debris striking events". Journal of Visualization 22, nr 4 (2.07.2019): 783–94. http://dx.doi.org/10.1007/s12650-019-00571-8.
Pełny tekst źródłaRezk, Hegazy, Magdy M. Zaky, Mohemmed Alhaider i Mohamed A. Tolba. "Robust Fractional MPPT-Based Moth-Flame Optimization Algorithm for Thermoelectric Generation Applications". Energies 15, nr 23 (23.11.2022): 8836. http://dx.doi.org/10.3390/en15238836.
Pełny tekst źródłaFuyuto, Takayuki, Yoshiaki Hattori, Hayato Yamashita, Naoki Toda i Makoto Mashida. "Set-off length reduction by backward flow of hot burned gas surrounding high-pressure diesel spray flame from multi-hole nozzle". International Journal of Engine Research 18, nr 3 (28.07.2016): 173–94. http://dx.doi.org/10.1177/1468087416640429.
Pełny tekst źródłaRozprawy doktorskie na temat "Flame Particle Tracking"
Arimboor, Chinnan Jacob. "Simulation and validation of in-cylinder combustion for a heavy-duty Otto gas engine using 3D-CFD technique". Thesis, KTH, Förbränningsmotorteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-245172.
Pełny tekst źródłaEmission from automobiles has been gaining importance for past few decades. This has gained a lot of impetus in search for alternate fuels among the automotive manufacturers. This led to the increase usage of Otto gas engine which uses natural gas as fuel. New engine designs have to be optimized for improving the engine efficiency. This led to usage of virtual simulations for reducing the lead time in the engine development. The verification and validation of actual phenomenon in the virtual simulations with respect to the physical measurements was quite important. The aim of this master thesis is to suggest the combustion model parameters after evaluating various combination of combustion and ignition models in terms of computational time and accuracy. In-cylinder pressure trace from the simulation is compared with the measurement in order to find the nest suited combination of combustion and ignition models. The influence of ignition timing, number of engine cycles and boundary conditions on the simulation results are also studied. Results showed that ECFM combustion model predicts the simulation results more accurately when compare to the measurements. Impact of ignition timing on various combination of combustion and ignition model is also assessed. Stability of various combustion simulation models is also discussed while running for more engine cycles. Comparison of computational time is also made for various combination of combustion and ignition models. Results also showed that the flame tracking method using Euler is dependent on the mesh resolution and the mesh quality. Recommendations and suggestions are given about the mesh and simulation settings for predicting the combustion simulation accurately. Some possible areas of improvement are given as future work for improving the accuracy of the simulation results.
Winter, Henry deGraffenried III. "Combining hydrodynamic modeling with nonthermal test particle tracking to improve flare simulations". Thesis, Montana State University, 2009. http://etd.lib.montana.edu/etd/2009/winter/WinterH0509.pdf.
Pełny tekst źródłaWinter, Henry deGraffenried. "Combining hydrodynamic modeling with nonthermal test particle tracking to improve flare simulations". 2009. http://etd.lib.montana.edu/etd/2009/winter/WinterH0509.pdf.
Pełny tekst źródłaCzęści książek na temat "Flame Particle Tracking"
Hatwar, Madwaraj, Ashwin S. Nayak, Himanshu L. Dave, Utkarsh Aggarwal i Swetaprovo Chaudhuri. "Cluster Analysis of Turbulent Premixed Combustion Using On-the-fly Flame Particle Tracking". W Sustainable Development for Energy, Power, and Propulsion, 389–413. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5667-8_15.
Pełny tekst źródłaHeyman, J., i C. Ancey. "Tracking bed load particles in a steep flume: Methods and results". W River Flow 2014, 909–16. CRC Press, 2014. http://dx.doi.org/10.1201/b17133-123.
Pełny tekst źródłaStreszczenia konferencji na temat "Flame Particle Tracking"
Liu, Kan, David Liu i Andrew Wang. "Two-dimensional Particle Tracking Velocimetry and Flame Front Detection". W 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2018. http://dx.doi.org/10.2514/6.2018-0490.
Pełny tekst źródłaUranakar, Harshavardhana A., Swetaprovo Chaudhuri i K. N. Lakshmisha. "Turbulence-Transport-Chemistry Interaction in Statistically Planar Premixed Flames and Ignition Kernels in Near Isotropic Turbulence". W ASME 2014 Gas Turbine India Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/gtindia2014-8340.
Pełny tekst źródłaDongmo, E., R. Gadow i M. Wenzelburger. "A Numerical Model for Combustion and Expansion in HVOF Flame Spraying". W ITSC2008, redaktorzy B. R. Marple, M. M. Hyland, Y. C. Lau, C. J. Li, R. S. Lima i G. Montavon. Verlag für Schweißen und verwandte Verfahren DVS-Verlag GmbH, 2008. http://dx.doi.org/10.31399/asm.cp.itsc2008p1345.
Pełny tekst źródłaFrolov, S. M., i V. S. Ivanov. "Numerical simulation of deflagration-to-detonation transition by coupled flame tracking - particle method". W Progress in Propulsion Physics. Les Ulis, France: EDP Sciences, 2011. http://dx.doi.org/10.1051/eucass/201102533.
Pełny tekst źródłaErmolaev, G. V., i A. V. Zaitsev. "IGNITION CONDITIONS OF A SINGLE BORON PARTICLE IN HOT GAS FLOW". W 8TH INTERNATIONAL SYMPOSIUM ON NONEQUILIBRIUM PROCESSES, PLASMA, COMBUSTION, AND ATMOSPHERIC PHENOMENA. TORUS PRESS, 2020. http://dx.doi.org/10.30826/nepcap2018-2-08.
Pełny tekst źródłaVersailles, Philippe, Antoine Durocher, Gilles Bourque i Jeffrey M. Bergthorson. "Measurements of the Reactivity of Premixed, Stagnation, Methane-Air Flames at Gas Turbine Relevant Pressures". W ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/gt2018-77018.
Pełny tekst źródłaPuduppakkam, Karthik V., Abhijit U. Modak, Chitralkumar V. Naik, Joaquin Camacho, Hai Wang i Ellen Meeks. "A Soot Chemistry Model That Captures Fuel Effects". W ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/gt2014-27123.
Pełny tekst źródłaBoyde, J. M., P. Le Clercq, M. Di Domenico, M. Rachner, G. C. Gebel, T. Mosbach i M. Aigner. "Validation of an Ignition and Flame Propagation Model for Multiphase Flows". W ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/gt2011-45104.
Pełny tekst źródłaMunzar, Jeffrey D., Ahmed Zia, Philippe Versailles, Rodrigo Jiménez, Jeffrey M. Bergthorson i Benjamin Akih-Kumgeh. "Comparison of Laminar Flame Speeds, Extinction Stretch Rates and Vapor Pressures of Jet A-1/HRJ Biojet Fuel Blends". W ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/gt2014-25951.
Pełny tekst źródłaChong, Shao Teng, Venkat Raman, Michael E. Mueller i Hong G. Im. "The Role of Recirculation Zones in Soot Formation in Aircraft Combustors". W ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/gt2018-76217.
Pełny tekst źródła