Gotowa bibliografia na temat „Flame blowoff”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Flame blowoff”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Flame blowoff"
Zhang, Qingguo, David R. Noble i Tim Lieuwen. "Characterization of Fuel Composition Effects in H2∕CO∕CH4 Mixtures Upon Lean Blowout". Journal of Engineering for Gas Turbines and Power 129, nr 3 (26.12.2006): 688–94. http://dx.doi.org/10.1115/1.2718566.
Pełny tekst źródłaSAMESHIMA, Taiki, Mitsuharu TAKAO, Toshiaki YANO i Shuichi TORII. "FLAME BLOWOFF LIMITS EXTENTION BY FLAME HOLDER WITH AIR-SUCTION". Proceedings of Conference of Kyushu Branch 2002.55 (2002): 191–92. http://dx.doi.org/10.1299/jsmekyushu.2002.55.191.
Pełny tekst źródłaPatel, Vipul, i Rupesh Shah. "Analysis of LPG diffusion flame in tube type burner". Journal of Mechanical Engineering and Sciences 13, nr 3 (26.09.2019): 5278–93. http://dx.doi.org/10.15282/jmes.13.3.2019.05.0431.
Pełny tekst źródłaHuang, Lung-Weei, i Chiun-Hsun Chen. "FLAME STABILIZATION AND BLOWOFF OVER A SINGLE DROPLET". Numerical Heat Transfer, Part A: Applications 27, nr 1 (styczeń 1995): 53–71. http://dx.doi.org/10.1080/10407789508913688.
Pełny tekst źródłaCHEN, CHIUN-HSUN, i FANG-BOR WENG. "Flame Stabilization and Blowoff Over a Porous Cylinder". Combustion Science and Technology 73, nr 1-3 (wrzesień 1990): 427–46. http://dx.doi.org/10.1080/00102209008951661.
Pełny tekst źródłaTORIKAI, Hiroyuki, Akiko MATSUO, Toshihisa UEDA i Masahiko MIZOMOTO. "Blowoff Characteristics and Flame Structure of Edge Flame in the Stagnation Flow." Transactions of the Japan Society of Mechanical Engineers Series B 68, nr 666 (2002): 610–18. http://dx.doi.org/10.1299/kikaib.68.610.
Pełny tekst źródłaNair, Suraj, i Tim Lieuwen. "Near-Blowoff Dynamics of a Bluff-Body Stabilized Flame". Journal of Propulsion and Power 23, nr 2 (marzec 2007): 421–27. http://dx.doi.org/10.2514/1.24650.
Pełny tekst źródłaSanthosh, R., i Saptarshi Basu. "Transitions and blowoff of unconfined non-premixed swirling flame". Combustion and Flame 164 (luty 2016): 35–52. http://dx.doi.org/10.1016/j.combustflame.2015.10.034.
Pełny tekst źródłaHindasageri, Vijaykumar, Rajendra Vedula i Siddini Prabhu. "Blowoff Stability of Methane-Air Premixed Flame on Tube Burners". International Journal of Emerging Multidisciplinary Fluid Sciences 3, nr 4 (wrzesień 2011): 209–26. http://dx.doi.org/10.1260/1756-8315.3.4.209.
Pełny tekst źródłaHe, Zhonghao, Hongbo Wang, Fan Li, Yifu Tian, Minggang Wan i Jiajian Zhu. "Effect of Fuel-Injection Distance and Cavity Rear-Wall Height on the Flameholding Characteristics in a Mach 2.52 Supersonic Flow". Aerospace 9, nr 10 (29.09.2022): 566. http://dx.doi.org/10.3390/aerospace9100566.
Pełny tekst źródłaRozprawy doktorskie na temat "Flame blowoff"
Shroll, Andrew Philip. "Dynamic stability, blowoff, and flame characteristics of oxy-fuel combustion". Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/67803.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references (p. 83-86).
Oxy-fuel combustion is a promising technology to implement carbon capture and sequestration for energy conversion to electricity in power plants that burn fossil fuels. In oxy-fuel combustion, air separation is used to burn fuel in oxygen to easily obtain a pure stream of carbon dioxide from the products of combustion. A diluent, typically carbon dioxide, is recycled from the exhaust to mitigate temperature. This substitution of carbon dioxide with the nitrogen in air alters the thermodynamics, transport properties, and relative importance of chemical pathways of the reacting mixture, impacting the flame temperature and stability of the combustion process. In this thesis, methane oxy-combustion flames are studied for relevance to natural gas. First, a numerical 1-D strained flame shows significantly reduced consumption speeds for oxy-combustion compared to air combustion at the same adiabatic flame temperature. Competition for the H radical from the presence of carbon dioxide causes high CO emissions. Elevated strain rates also cause incomplete combustion in oxy-combustion, demonstrated by the effect of Lewis number with a value greater than one for flame temperatures under 1900 K. Most of this work focuses on experimental results from premixed flames in a 50 kW axi-symmetric swirl-stabilized combustor. Combustion instabilities, upon which much effort is expended to avoid in gas turbines with low pollutant emissions, are described as a baseline for the given combustor geometry using overall sound pressure level maps and chemiluminescence images of 1/4, 3/4, and 5/4 wave mode limit cycles. These oxy-combustion results are compared to conventional air combustion, and the collapse of mode transitions with temperature for a given Reynolds number is found. Hysteresis effects in mode transition are important and similar for air and oxy-combustion. Blowoff trends are also analyzed. While oxy-combustion flames blow off at a higher temperature for a given Reynolds number due to weaker flames, there is an unexpected negative slope in blowoff velocity vs temperature for both air and oxy-combustion. The blowoff data are shown to collapse due to blowoff velocity being inversely proportional to the molar heat capacities of the burned gas mixtures at a given power. Finally, particle image velocimetry results are discussed to relate flow structures to corresponding flame structures.
by Andrew Philip Shroll.
S.M.
Foley, Christopher William. "Attachment point characteristics and modeling of shear layer stabilized flames in an annular, swirling flowfield". Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/54357.
Pełny tekst źródłaBinti, Munajat Nur Farizan. "Combustion of gasified biomass: : Experimental investigation on laminar flame speed, lean blowoff limit and emission levels". Doctoral thesis, KTH, Kraft- och värmeteknologi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-120570.
Pełny tekst źródłaQC 20130411
Huelskamp, Bethany C. "The Development of a Correlation to Predict the Lean Blowout of Bluff Body Stabilized Flames with a Focus on Relevant Timescales and Fuel Characteristics". University of Dayton / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1367192147.
Pełny tekst źródłaBompelly, Ravi K. "Lean blowout and its robust sensing in swirl combustors". Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/47529.
Pełny tekst źródłaNair, Suraj. "Acoustic Characterization of Flame Blowout Phenomenon". Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/10413.
Pełny tekst źródłaZhang, Qingguo. "Lean blowoff characteristics of swirling H2/CO/CH4 Flames". Diss., Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/22641.
Pełny tekst źródłaHusain, Sajjad A. "Analysis of blowoff scaling of bluff body stabilized flames". Thesis, Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/22565.
Pełny tekst źródłaMoore, Nancy Jennings. "Effects of Leading-Edge Flame Behavior on Flame Stabilization and Blowout". NCSU, 2009. http://www.lib.ncsu.edu/theses/available/etd-10012009-135737/.
Pełny tekst źródłaPrakash, Shashvat. "Lean Blowout Mitigation in Swirl Stabilized Premixed Flames". Diss., Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/16159.
Pełny tekst źródłaKsiążki na temat "Flame blowoff"
Tangirala, V. LDV/Rayleigh scattering measurements to study the blowoff of swirling flames. New York: AIAA, 1986.
Znajdź pełny tekst źródłaA sea in flames: The Deepwater Horizon Oil blowout. New York: Crown Publishers, 2011.
Znajdź pełny tekst źródłaCzęści książek na temat "Flame blowoff"
Sun, Mingbo, Hongbo Wang, Zun Cai i Jiajian Zhu. "Flame Behaviors Near Blowoff in Supersonic Flows". W Unsteady Supersonic Combustion, 307–45. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3595-6_6.
Pełny tekst źródłaMaleta, T., R. N. Parthasarathy i S. R. Gollahalli. "Blowoff Characteristics of Laminar Partially Premixed Flames of Palm Methyl Ester/Jet A Blends". W Sustainable Development for Energy, Power, and Propulsion, 161–76. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5667-8_7.
Pełny tekst źródłaSen, Swarnendu, Rajendra R. Chaudhari i Achintya Mukhopadhyay. "Lean Blowout Detection Techniques for Partially Premixed Flames in a Dump Combustor". W Novel Combustion Concepts for Sustainable Energy Development, 199–232. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-2211-8_9.
Pełny tekst źródłaKumar, Rajesh, Krishna C. Kalvakala i Suresh K. Aggarwal. "Effect of Oxygenation on the Liftoff, Stabilization, and Blowout Characteristics of Laminar Co-flow Jet Flames". W Green Energy and Technology, 273–89. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2648-7_12.
Pełny tekst źródłaWierzba, I., K. Kar i G. A. Karim. "The Blowout of a Jet Diffusion Flame: The Effects of the Velocity and Composition of the Surrounding Co-Flowing Stream". W Combustion Technologies for a Clean Environment, 323–33. London: CRC Press, 2022. http://dx.doi.org/10.1201/9780367810597-25.
Pełny tekst źródłaDe Giorgi, Maria Grazia, Sara Bonuso, Ghazanfar Mehdi, Mohamed Shamma, Stefan Raphael Harth, Nikolaos Zarzalis i Dimosthenis Trimis. "Enhancement of Blowout Limits in Lifted Swirled Flames in Methane-Air Combustor by the Use of Sinusoidally Driven Plasma Discharges". W Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 66–82. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-90727-3_5.
Pełny tekst źródła"Flame Stabilization, Flashback, Flameholding, and Blowoff". W Unsteady Combustor Physics, 379–405. Wyd. 2. Cambridge University Press, 2021. http://dx.doi.org/10.1017/9781108889001.011.
Pełny tekst źródłaStreszczenia konferencji na temat "Flame blowoff"
Zhang, Qingguo, David R. Noble, Santosh J. Shanbhogue i Tim Lieuwen. "Impacts of Hydrogen Addition on Near-Lean Blowout Dynamics in a Swirling Combustor". W ASME Turbo Expo 2007: Power for Land, Sea, and Air. ASMEDC, 2007. http://dx.doi.org/10.1115/gt2007-27308.
Pełny tekst źródłaHusain, Sajjad A., Ganesh Nair, Santosh Shanbhogue i Tim C. Lieuwen. "Review and Analysis of Bluff Body Flame Stabilization Data". W ASME Turbo Expo 2008: Power for Land, Sea, and Air. ASMEDC, 2008. http://dx.doi.org/10.1115/gt2008-50375.
Pełny tekst źródłaFoley, Christopher W., Jerry Seitzman i Tim Lieuwen. "Analysis and Scalings of Blowoff Limits of 2D and Axisymmetric Bluff Body Stabilized Flames". W ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/gt2012-70048.
Pełny tekst źródłaIdahosa, Uyi, Abhishek Saha, Chengying Xu i Saptarshi Basu. "Characterization of Combustion Dynamics in Swirl Stabilized Flames". W ASME 2009 Power Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/power2009-81168.
Pełny tekst źródłaZhang, Qingguo, Santosh J. Shanbhogue i Tim Lieuwen. "Dynamics of Premixed H2/CH4 Flames Under Near-Blowoff Conditions". W ASME Turbo Expo 2009: Power for Land, Sea, and Air. ASMEDC, 2009. http://dx.doi.org/10.1115/gt2009-59981.
Pełny tekst źródłaTorii, Shuichi, Sze Man Simon Chan i Toshiaki Yano. "Flame Blowoff Limit Phenomenon of Turbulent Jet Diffusion Flames With Annular Counterflow". W ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-39059.
Pełny tekst źródłaKwong, W. Y., i A. M. Steinberg. "Blowoff and Reattachment Dynamics of a Linear Multi-Nozzle Combustor". W ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/gt2018-75647.
Pełny tekst źródłaZare, Saeid, Hao Wei Lo, Shrabanti Roy i Omid Askari. "Flame Stability in Inverse Coaxial Injector Using Repetitive Nanosecond Pulsed Plasma". W ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-10991.
Pełny tekst źródłaFoley, C. W., I. Chterev, J. Seitzman i T. Lieuwen. "High Resolution PIV and CH-PLIF Measurements and Analysis of a Shear Layer Stabilized Flame". W ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/gt2015-43387.
Pełny tekst źródłaZhang, Qingguo, David R. Noble, Andrew Meyers, Kunning Xu i Tim Lieuwen. "Characterization of Fuel Composition Effects in H2/CO/CH4 Mixtures Upon Lean Blowout". W ASME Turbo Expo 2005: Power for Land, Sea, and Air. ASMEDC, 2005. http://dx.doi.org/10.1115/gt2005-68907.
Pełny tekst źródłaRaporty organizacyjne na temat "Flame blowoff"
Lieuwen, Tim, i Jared Kee. PR-592-16208-R01 Effect of Variability in Fuel on Operation and Reliability of Gas Turbine. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), marzec 2017. http://dx.doi.org/10.55274/r0011023.
Pełny tekst źródłaLyons, Kevin M. Stabilization and Blowout of Gaseous- and Spray-Jet Flames. Fort Belvoir, VA: Defense Technical Information Center, sierpień 2004. http://dx.doi.org/10.21236/ada426409.
Pełny tekst źródłaHuelskamp, Bethany C., Barry V. Kiel, Amy C. Lynch, Stanislav Kostka, Ponnuthurai Gokulakrishnan i Michael S. Klassen. Improved Correlation for Blowout of Bluff-body Stabilized Flames (Preprint). Fort Belvoir, VA: Defense Technical Information Center, kwiecień 2012. http://dx.doi.org/10.21236/ada560506.
Pełny tekst źródłaLyons, Kevin M. Flame Propagation and Blowout in Hydrocarbon Jets: Experiments to Understand the Stability and Structure. Fort Belvoir, VA: Defense Technical Information Center, lipiec 2012. http://dx.doi.org/10.21236/ada577412.
Pełny tekst źródła