Artykuły w czasopismach na temat „Fixed-wing UAV guidance”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 43 najlepszych artykułów w czasopismach naukowych na temat „Fixed-wing UAV guidance”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Israr, Amber, Eman H. Alkhammash i Myriam Hadjouni. "Guidance, Navigation, and Control for Fixed-Wing UAV". Mathematical Problems in Engineering 2021 (16.10.2021): 1–18. http://dx.doi.org/10.1155/2021/4355253.
Pełny tekst źródłaZhai, Rui Yong, Wen Dong Zhang, Zhao Ying Zhou, Sheng Bo Sang i Pei Wei Li. "Trajectory Tracking Control for Micro Unmanned Aerial Vehicles". Advanced Materials Research 798-799 (wrzesień 2013): 448–51. http://dx.doi.org/10.4028/www.scientific.net/amr.798-799.448.
Pełny tekst źródłaWang, Shuo, Ziyang Zhen, Ju Jiang i Xinhua Wang. "Flight Tests of Autopilot Integrated with Fault-Tolerant Control of a Small Fixed-Wing UAV". Mathematical Problems in Engineering 2016 (2016): 1–7. http://dx.doi.org/10.1155/2016/2141482.
Pełny tekst źródłaIong, P. T., S. H. Chen i Y. Yang. "Vision guidance of a fixed wing UAV using a single camera configuration". Aeronautical Journal 117, nr 1188 (luty 2013): 147–73. http://dx.doi.org/10.1017/s0001924000007922.
Pełny tekst źródłaXiong, Wei, Zhao Ying Zhou i Xiao Yan Liu. "Study of Low Cost Micro Autopilot for Fixed-Wing UAV". Advanced Materials Research 317-319 (sierpień 2011): 1672–76. http://dx.doi.org/10.4028/www.scientific.net/amr.317-319.1672.
Pełny tekst źródłaLee, C.-S., i F.-B. Hsiao. "Implementation of vision-based automatic guidance system on a fixed-wing unmanned aerial vehicle". Aeronautical Journal 116, nr 1183 (wrzesień 2012): 895–914. http://dx.doi.org/10.1017/s000192400000734x.
Pełny tekst źródłaDeng, Zhao, Zhiming Guo, Liaoni Wu i Yancheng You. "Trajectory Planning for Emergency Landing of VTOL Fixed-Wing Unmanned Aerial Vehicles". Mobile Information Systems 2021 (29.11.2021): 1–15. http://dx.doi.org/10.1155/2021/6289822.
Pełny tekst źródłaChen, Chao, i Jiali Tan. "Path Following for UAV using Nonlinear Model Predictive Control". Journal of Physics: Conference Series 2530, nr 1 (1.06.2023): 012021. http://dx.doi.org/10.1088/1742-6596/2530/1/012021.
Pełny tekst źródłaMat, Amir Rasydan, Liew Mun How, Omar Kassim Ariff, M. Amzari M. Zhahir i Ramly Mohd Ajir. "Autonomous Aerial Hard Docking of Fixed and Rotary Wing UAVs: Task Assessment and Solution Architecture". Applied Mechanics and Materials 629 (październik 2014): 176–81. http://dx.doi.org/10.4028/www.scientific.net/amm.629.176.
Pełny tekst źródłaLee, Jehoon, i Sanghyuk Park. "Pre-simulation based Automatic Landing Approach by Waypoint Guidance for Fixed-Wing UAV". Journal of the Korean Society for Aeronautical & Space Sciences 49, nr 7 (31.07.2021): 557–64. http://dx.doi.org/10.5139/jksas.2021.49.7.557.
Pełny tekst źródłaGong, Zheng, Zan Zhou, Zian Wang, Quanhui Lv, Jinfa Xu i Yunpeng Jiang. "Coordinated Formation Guidance Law for Fixed-Wing UAVs Based on Missile Parallel Approach Method". Aerospace 9, nr 5 (18.05.2022): 272. http://dx.doi.org/10.3390/aerospace9050272.
Pełny tekst źródłaYang, Jun, Arun Geo Thomas, Satish Singh, Simone Baldi i Ximan Wang. "A Semi-Physical Platform for Guidance and Formations of Fixed-Wing Unmanned Aerial Vehicles". Sensors 20, nr 4 (19.02.2020): 1136. http://dx.doi.org/10.3390/s20041136.
Pełny tekst źródłaZhan, Guang, Zheng Gong, Quanhui Lv, Zan Zhou, Zian Wang, Zhen Yang i Deyun Zhou. "Flight Test of Autonomous Formation Management for Multiple Fixed-Wing UAVs Based on Missile Parallel Method". Drones 6, nr 5 (19.04.2022): 99. http://dx.doi.org/10.3390/drones6050099.
Pełny tekst źródłaÁngeles-Rojas, David, Omar-Jacobo Santos-Sánchez, Sergio Salazar i Rogelio Lozano. "Finite Horizon Nonlinear Suboptimal Control for an Autonomous Soaring UAV". Mathematical Problems in Engineering 2022 (12.03.2022): 1–15. http://dx.doi.org/10.1155/2022/2214217.
Pełny tekst źródłaKim, Myungkang, Chunggil Ra, Seungkeun Kim i Jinyoung Suk. "Guidance and Control Algorithm Design for Terrain-Following Flight of a Fixed-Wing UAV". Journal of the Korean Society for Aeronautical & Space Sciences 51, nr 5 (31.05.2023): 299–306. http://dx.doi.org/10.5139/jksas.2023.51.5.299.
Pełny tekst źródłaXi, Yong-Zai, Gui-Xiang Liao, Ning Lu, Yong-Bo Li i Shan Wu. "Study on the Aeromagnetic System between Fixed-Wing UAV and Unmanned Helicopter". Minerals 13, nr 5 (20.05.2023): 700. http://dx.doi.org/10.3390/min13050700.
Pełny tekst źródłaChen, Yang, Nan Li, Wei Zeng i Yongliang Wu. "Curved Path Following Control for a Small Fixed-Wing UAV with Parameters Adaptation". Applied Sciences 12, nr 9 (21.04.2022): 4187. http://dx.doi.org/10.3390/app12094187.
Pełny tekst źródłaMuslimov, Tagir Z., i Rustem A. Munasypov. "Multi-UAV cooperative target tracking via consensus-based guidance vector fields and fuzzy MRAC". Aircraft Engineering and Aerospace Technology 93, nr 7 (7.08.2021): 1204–12. http://dx.doi.org/10.1108/aeat-02-2021-0058.
Pełny tekst źródłaSafwat, Ehab, Weiguo Zhang, Ahmed Mohsen i Mohamed Kassem. "Design and Analysis of a Robust UAV Flight Guidance and Control System Based on a Modified Nonlinear Dynamic Inversion". Applied Sciences 9, nr 17 (2.09.2019): 3600. http://dx.doi.org/10.3390/app9173600.
Pełny tekst źródłaLee, C. S., W. L. Chan, S. S. Jan i F. B. Hsiao. "A linear-quadratic-Gaussian approach for automatic flight control of fixed-wing unmanned air vehicles". Aeronautical Journal 115, nr 1163 (styczeń 2011): 29–41. http://dx.doi.org/10.1017/s0001924000005340.
Pełny tekst źródłaWu, Kun, Zhihao Cai, Jiang Zhao i Yingxun Wang. "Target Tracking Based on a Nonsingular Fast Terminal Sliding Mode Guidance Law by Fixed-Wing UAV". Applied Sciences 7, nr 4 (29.03.2017): 333. http://dx.doi.org/10.3390/app7040333.
Pełny tekst źródłaSamaniego, Franklin, Javier Sanchis, Sergio Garcia-Nieto i Raul Simarro. "Smooth 3D Path Planning by Means of Multiobjective Optimization for Fixed-Wing UAVs". Electronics 9, nr 1 (28.12.2019): 51. http://dx.doi.org/10.3390/electronics9010051.
Pełny tekst źródłaDeng, Zhao, Liaoni Wu i Yancheng You. "Modeling and Design of an Aircraft-Mode Controller for a Fixed-Wing VTOL UAV". Mathematical Problems in Engineering 2021 (29.09.2021): 1–17. http://dx.doi.org/10.1155/2021/7902134.
Pełny tekst źródłaKayacan, Erdal, Mojtaba Ahmadieh Khanesar, Jaime Rubio-Hervas i Mahmut Reyhanoglu. "Learning Control of Fixed-Wing Unmanned Aerial Vehicles Using Fuzzy Neural Networks". International Journal of Aerospace Engineering 2017 (2017): 1–12. http://dx.doi.org/10.1155/2017/5402809.
Pełny tekst źródłaRuggles, Samantha, Joseph Clark, Kevin W. Franke, Derek Wolfe, Brandon Reimschiissel, R. Abraham Martin, Trent J. Okeson i John D. Hedengren. "Comparison of SfM computer vision point clouds of a landslide derived from multiple small UAV platforms and sensors to a TLS-based model". Journal of Unmanned Vehicle Systems 4, nr 4 (1.12.2016): 246–65. http://dx.doi.org/10.1139/juvs-2015-0043.
Pełny tekst źródłaWU, Weinan, i Naigang Cui. "A distributed and integrated method for cooperative mission planning of multiple heterogeneous UAVs". Aircraft Engineering and Aerospace Technology 90, nr 9 (14.11.2018): 1403–12. http://dx.doi.org/10.1108/aeat-05-2017-0124.
Pełny tekst źródłaAlturbeh, Hamid, i James F. Whidborne. "Visual Flight Rules-Based Collision Avoidance Systems for UAV Flying in Civil Aerospace". Robotics 9, nr 1 (25.02.2020): 9. http://dx.doi.org/10.3390/robotics9010009.
Pełny tekst źródłaZhang, Zhitao, Changchuan Xie, Wei Wang i Chao An. "An Experimental and Numerical Evaluation of the Aerodynamic Performance of a UAV Propeller Considering Pitch Motion". Drones 7, nr 7 (6.07.2023): 447. http://dx.doi.org/10.3390/drones7070447.
Pełny tekst źródłaPogorzelski, G., i F. J. Silvestre. "Autonomous soaring using a simplified MPC approach". Aeronautical Journal 123, nr 1268 (15.03.2019): 1666–700. http://dx.doi.org/10.1017/aer.2019.6.
Pełny tekst źródłaZhao, Yu, Jifeng Guo, Chengchao Bai i Hongxing Zheng. "Reinforcement Learning-Based Collision Avoidance Guidance Algorithm for Fixed-Wing UAVs". Complexity 2021 (16.01.2021): 1–12. http://dx.doi.org/10.1155/2021/8818013.
Pełny tekst źródłaKalra, Arti, Sreenatha Anavatti i Radhakant Padhi. "Aggressive Formation Flying of Fixed-Wing UAVs with Differential Geometric Guidance". Unmanned Systems 05, nr 02 (kwiecień 2017): 97–113. http://dx.doi.org/10.1142/s2301385017500078.
Pełny tekst źródłaCoates, Erlend M., i Thor I. Fossen. "Geometric Reduced-Attitude Control of Fixed-Wing UAVs". Applied Sciences 11, nr 7 (1.04.2021): 3147. http://dx.doi.org/10.3390/app11073147.
Pełny tekst źródłaLehr, William J. "THE POTENTIAL USE OF SMALL UAS IN SPILL RESPONSE". International Oil Spill Conference Proceedings 2008, nr 1 (1.05.2008): 431–33. http://dx.doi.org/10.7901/2169-3358-2008-1-431.
Pełny tekst źródłaPark, Sanghyuk. "Rendezvous Guidance on Circular Path for Fixed-Wing UAV". International Journal of Aeronautical and Space Sciences, 30.04.2020. http://dx.doi.org/10.1007/s42405-020-00281-8.
Pełny tekst źródłaHe, Mo, Xiaogang Wang i Naigang Cui. "Modified vector field and nonlinear guidance law for low-cost UAV path following". Aircraft Engineering and Aerospace Technology, 22.06.2022. http://dx.doi.org/10.1108/aeat-03-2019-0045.
Pełny tekst źródłaWang, Ximan, Simone Baldi, Xuewei Feng, Changwei Wu, Hongwei Xie i Bart De Schutter. "A Fixed-Wing UAV Formation Algorithm Based on Vector Field Guidance". IEEE Transactions on Automation Science and Engineering, 2022, 1–14. http://dx.doi.org/10.1109/tase.2022.3144672.
Pełny tekst źródła"Fixed-wing UAV guidance law for ground target over-flight tracking". Journal of Systems Engineering and Electronics 30, nr 2 (2019): 384. http://dx.doi.org/10.21629/jsee.2019.02.16.
Pełny tekst źródłaZhang, Min, Pengfei Tian, Xin Chen i Xin Wang. "Ground Target Tracking Guidance Law for Fixed-Wing Unmanned Aerial Vehicle: A Search and Capture Approach". Journal of Dynamic Systems, Measurement, and Control 139, nr 10 (28.06.2017). http://dx.doi.org/10.1115/1.4036563.
Pełny tekst źródłaSai-fei, Wu, Wang Xin-hua, Bai Jun-jie i Tan Qing-yan. "Autonomous Landing of a Fixed Wing UAV with a Ground-based Visual Guidance System". DEStech Transactions on Engineering and Technology Research, ICMITE2016 (21.12.2016). http://dx.doi.org/10.12783/dtetr/icmite20162016/4599.
Pełny tekst źródłaGryte, Kristoffer, Martin L. Sollie i Tor Arne Johansen. "Control System Architecture for Automatic Recovery of Fixed-Wing Unmanned Aerial Vehicles in a Moving Arrest System". Journal of Intelligent & Robotic Systems 103, nr 4 (29.11.2021). http://dx.doi.org/10.1007/s10846-021-01521-z.
Pełny tekst źródłaKim, Taerim, i Sanghyuk Park. "Fast Converging Circling Guidance for Fixed-Wing UAVs". International Journal of Aeronautical and Space Sciences, 22.06.2023. http://dx.doi.org/10.1007/s42405-023-00625-0.
Pełny tekst źródłaKim, Suhyeon, Hyeongjun Cho i Dongwon Jung. "Circular Formation Guidance of Fixed-wing UAVs using Mesh Network". IEEE Access, 2022, 1. http://dx.doi.org/10.1109/access.2022.3218673.
Pełny tekst źródłaYang, Yachao, Chang Liu, Jie Li, Yu Yang, Juan Li, Zhidong Zhang i Bobo Ye. "Design, implementation, and verification of a low‐cost terminal guidance system for small fixed‐wing UAVs". Journal of Field Robotics, 12.01.2021. http://dx.doi.org/10.1002/rob.22012.
Pełny tekst źródła