Gotowa bibliografia na temat „Fixed-wing drone”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Fixed-wing drone”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Fixed-wing drone"
Suroso, Indreswari, i Erwhin Irmawan. "Analysis Of Aerial Photography With Drone Type Fixed Wing In Kotabaru, Lampung". Journal of Applied Geospatial Information 2, nr 1 (4.05.2018): 102–7. http://dx.doi.org/10.30871/jagi.v2i1.738.
Pełny tekst źródłaSuroso, Indreswari. "ANALISIS PERAN UNMANNED AERIAL VEHICLE JENIS MULTICOPTER DALAM MENINGKATKAN KUALITAS DUNIA FOTOGRAFI UDARA DI LOKASI JALUR SELATAN MENUJU CALON BANDARA BARU DI KULONPROGO". REKAM: Jurnal Fotografi, Televisi, dan Animasi 14, nr 1 (15.08.2018): 17. http://dx.doi.org/10.24821/rekam.v14i1.2134.
Pełny tekst źródłaOkulski, Michał, i Maciej Ławryńczuk. "A Small UAV Optimized for Efficient Long-Range and VTOL Missions: An Experimental Tandem-Wing Quadplane Drone". Applied Sciences 12, nr 14 (13.07.2022): 7059. http://dx.doi.org/10.3390/app12147059.
Pełny tekst źródłaHu, Jiahao, Jingbo Wei, Kun Liu, Xiaobin Yu, Mingzhi Cao i Zijie Qin. "Hybrid Mode: Routinization of the Transition Mode as the Third Common Mode for Compound VTOL Drones". Drones 8, nr 3 (8.03.2024): 93. http://dx.doi.org/10.3390/drones8030093.
Pełny tekst źródłaAlhammadi, Mohamed, Mohammed Alavi, Ali Alameri i Sharul Sham Bin Dol. "Aerodynamic Study and Design of Fixed Wing and Multi-copter Combination". Engineering World 4 (31.12.2022): 91–95. http://dx.doi.org/10.37394/232025.2022.4.12.
Pełny tekst źródłaYan, Jun, Huiping Hu, Jiangkun Gong, Deyong Kong i Deren Li. "Exploring Radar Micro-Doppler Signatures for Recognition of Drone Types". Drones 7, nr 4 (21.04.2023): 280. http://dx.doi.org/10.3390/drones7040280.
Pełny tekst źródłaEllis-Felege, Susan N., Tanner Stechmann, Samuel Hervey, Christopher J. Felege, Robert F. Rockwell i Andrew F. Barnas. "Nesting Common Eiders (Somateria mollissima) show little behavioral response to fixed-wing drone surveys". Drone Systems and Applications 10, nr 1 (1.01.2022): 1–14. http://dx.doi.org/10.1139/juvs-2021-0012.
Pełny tekst źródłaHuang, Chenn-Jung, Kai-Wen Hu, Hao-Wen Cheng i Yi-Sin Sie Lin. "A Mission-Oriented Flight Path and Charging Mechanism for Internet of Drones". Sensors 23, nr 9 (25.04.2023): 4269. http://dx.doi.org/10.3390/s23094269.
Pełny tekst źródłaKapoulas, Ioannis K., Antonios Hatziefremidis, A. K. Baldoukas, Evangelos S. Valamontes i J. C. Statharas. "Small Fixed-Wing UAV Radar Cross-Section Signature Investigation and Detection and Classification of Distance Estimation Using Realistic Parameters of a Commercial Anti-Drone System". Drones 7, nr 1 (6.01.2023): 39. http://dx.doi.org/10.3390/drones7010039.
Pełny tekst źródłaMARIN, Florin Bogdan, Daniela Laura BURUIANA, Viorica GHISMAN i Mihaela MARIN. "Deep neural network modeling for CFD simulation of drone bioinspired morphing wings". INCAS BULLETIN 15, nr 4 (2.12.2023): 149–57. http://dx.doi.org/10.13111/2066-8201.2023.15.4.12.
Pełny tekst źródłaRozprawy doktorskie na temat "Fixed-wing drone"
Alberts, Frederik Nicolaas. "Accurate autonomous landing of a fixed-wing unmanned aerial vehicle". Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/71672.
Pełny tekst źródłaENGLISH ABSTRACT: This thesis presents the analysis, design, simulation and practical implementation of a control system to achieve an accurate autonomous landing of a fixed-wing unmanned aerial vehicle in the presence of wind gust atmospheric disturbances. Controllers which incorporate the concept of direct-lift control were designed based on a study of the longitudinal dynamics of the UAV constructed as a testbed. Direct-lift control offers the prospect of an improvement in the precision with which aircraft height and vertical velocity can be controlled by utilising actuators which generate lift directly, instead of the conventional method whereby the moment produced by an actuator results in lift being indirectly generated. Two normal specific acceleration controllers were designed. The first being a conventional moment-based controller, and the second a direct-lift-augmented controller. The moment-based controller makes use of the aircraft’s elevator while the direct-lift augmented controller in addition makes use of the flaps of the aircraft which serve as the direct-lift actuator. Controllers were also designed to regulate the airspeed, altitude, climb rate, and roll angle of the aircraft as well as damp the Dutch roll mode. A guidance controller was implemented to allow for the following of waypoints. A landing procedure and methodology was developed which includes the circuit and landing approach paths and the concept of a glide path offset to calibrate the touchdown point of a landing. All controllers and the landing procedure were tested in a hardware-in-the-loop simulation environment as well as practically in a series of flight tests. Five fully autonomous landings were performed, three of these using the conventional NSA controller, and the final two the direct-lift-augmented NSA controller. The results obtained during the landing flight tests show that the project goal of a landing within five meters along the runway and three meters across the runway was achieved in both normal wind conditions as well as in conditions where wind gusts prevailed. The flight tests also showed that the direct-lift-augmented NSA controller appears to achieve a more accurate landing than the conventional NSA controller, especially in the presence of greater wind disturbances. The direct-lift augmented NSA controller also exhibited less pitch angle rotation during landing.
AFRIKAANSE OPSOMMING: Hierdie tesis verteenwoordig die analise, ontwerp, simulasie en praktiese implementering van ’n beheerstelsel wat ten doel het om ’n akkurate en outonome landing van ’n onbemande vastevlerk vliegtuig in rukwind atmosferiese toestande te bewerkstellig. Gegrond op ’n studie van die longitudinale dinamika van die vliegtuig wat as proeftuig gebruik is, is beheerders ontwerp wat die beginsel van direkte-lig insluit. Direkte-lig beheer hou die potensiaal in om die vliegtuig se hoogte en vertikale snelheid akkuraat te beheer deur gebruik te maak van aktueerders wat lig direk genereer in teenstelling met die konvensionele metode waar die moment van die aktueerder indirek lig genereer. Twee normaal-versnellings beheerders is ontwerp. Die eerste is ’n konvensionele moment-gebaseerde beheerder wat gebruik maak van die hys-aktueerder van die vliegtuig, en die tweede is ’n direkte-lig-bygestaande beheerder wat addisioneel gebruik maak van die flappe van die vliegtuig wat as die direkte-lig aktueerder dien. Vedere beheerders is ontwerp wat die lugspoed, hoogte, klimkoers, en rolhoek van die vliegtuig reguleer asook die “Dutch roll” gedrag afklam. ’n Leiding-beheerder wat die volg van vliegbakens hanteer, is ingestel. Die landingsprosedure en -metodologie is ontwikkel wat die landingspad sowel as die sweef-pad bepaal en wat terselfdertyd ’n metode daarstel om die posisie van die landingspunt te kalibreer. Die beheerders en landingsprosedure is in ’n hardeware-in-die-lus omgewing gesimuleer en deur middel van ’n reeks proefvlugte getoets. Vyf ten volle outonome landings is uitgevoer waarvan drie van die konvensionele normaal-versnellings beheerder gebruik gemaak het, en die laaste twee die direkte-lig-bygestaande normaal-versnellings beheerder. Die vlugtoetsuitslae bevestig dat die navorsingsdoel om ’n landing binne vyf meter in lyn met en drie meter dwarsoor die landingstrook te bewerkstellig, behaal is. Hierdie akkuraatheid is verkry in beide goeie atmosferiese toestande sowel as toestande met rukwinde. Volgens die vlugtoetse blyk dit dat die direkte-lig-bygestaande normaalversnellings beheerder ’n meer akkurate landing kan bewerkstellig as die konvensionele normaal-versnellings beheerder, veral dan in toestande met rukwinde. Die direkte-ligbygestaande normaal-versnellings beheerder het ook ’n laer hei-hoek rotasie tydens die landing vertoon.
Basson, Matthys Michaelse. "Stall prevention control of fixed-wing unmanned aerial vehicles". Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/4310.
Pełny tekst źródłaENGLISH ABSTRACT: This thesis presents the development of a stall prevention flight control subsystem, which can easily be integrated into existing flight control architectures of fixed-wing unmanned aerial vehicles (UAV’s). This research forms an important part of faulttolerant flight control systems and will ensure that the aircraft continues to operate safely within its linear aerodynamic region. The focus of this thesis was the stall detection and prevention problem. After a thorough literature study on the topic of stall, a model based stall prevention control algorithm with feedback from an angle of attack sensor was developed. This algorithm takes into account the slew rate and saturation limits of the aircraft’s servos and is able to predict when the current flight condition will result in stall. The primary concern was stall during wings-level flight and involved the prevention of stall by utilising only the elevator control surface. A model predictive slew rate control algorithm was developed to override and dynamically limit the elevator command to ensure that the angle of attack does not exceed a predefined limit. The stall prevention control system was designed to operate as a switching control scheme, to minimise any restrictions imposed on the existing flight control system. Finally, software in the loop simulations were conducted using a nonlinear aircraft model and realistic sensor noise, to verify the theoretical results obtained during the development of this stall prevention control strategy. A worst-case performance analysis was also conducted to investigate the robustness of the control algorithms against model uncertainties.
AFRIKAANSE OPSOMMING: Hierdie tesis handel oor die ontwikkeling van ’n staak voorkomings-vlugbeheer substelsel wat maklik geïntegreer kan word in bestaande vlugbeheer argitektuur van onbemande vaste-vlerk lugvaartuie. Hierdie tesis vorm ’n belangrike deel van fouttolerante vlugbeheertegnieke en sal verseker dat die vliegtuig slegs binne sy lineêre aerodinamiese werksgebied bly. Die fokus van hierdie tesis is die staak opsporing en voorkomings probleem. Na afloop van ’n deeglike literatuurstudie oor die onderwerp van staak, is ’n model gebaseerde staak voorkomings-beheertegniek ontwikkel, wat terugvoer van ’n invalshoek sensor ontvang. Hierdie algoritme neem die sleur tempo en defleksie limiete van die vliegtuig se servos in ag en is in staat om staak te voorspel. Die primêre oorweging was staak tydens simmetriese vlugte en behels slegs die voorkoming van staak deur gebruik te maak van die hei beheer oppervlak. ’n Model voorspellings sleur tempo beheeralgoritme is ontwikkel om die hei-roer dinamies te beperk sodat die invalshoek nie ’n sekere vooraf bepaalde limiet oorskry nie. Die staak voorkomings beheerstelsel is ontwerp om te funksioneer as ’n skakel beheer skema om die beperkings op die bestaande vlugbeheerstelsel te minimaliseer. Laastens was sagteware-in-die-lus simulasies gebruik om die teoretiese resultate, wat verkry is tydens die ontwikkeling van hierdie staak voorkomings beheer-strategie, te kontroleer. Om die robuusthied van hierdie beheeralgoritmes teen model onsekerhede te ondersoek, is ’n ergste-geval prestasie analise ook uitgevoer.
Hough, Willem J. "Autonomous aerobatic flight of a fixed wing unmanned aerial vehicle". Thesis, Link to online version, 2007. http://hdl.handle.net/10019/428.
Pełny tekst źródłaDe, Hart Ruan Dirk. "Advanced take-off and flight control algorithms for fixed wing unmanned aerial vehicles". Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/4179.
Pełny tekst źródłaENGLISH ABSTRACT: This thesis presents the development and implementation of a position based kinematic guidance system, the derivation and testing of a Dynamic Pursuit Navigation algorithm and a thorough analysis of an aircraft’s runway interactions, which is used to implement automated take-off of a fixed wing UAV. The analysis of the runway is focussed on the aircraft’s lateral modes. Undercarriage and aerodynamic effects are first analysed individually, after which the combined system is analysed. The various types of feedback control are investigated and the best solution suggested. Supporting controllers are designed and combined to successfully implement autonomous take-off, with acceleration based guidance. A computationally efficient position based kinematic guidance architecture is designed and implemented that allows a large percentage of the flight envelope to be utilised. An airspeed controller that allows for aggressive flight is designed and implemented by applying Feedback Linearisation techniques. A Dynamic Pursuit Navigation algorithm is derived that allows following of a moving ground based object at a constant distance (radius). This algorithm is implemented and verified through non-linear simulation.
AFRIKAANSE OPSOMMING: Hierdie tesis handel oor die ontwikkeling en toepassing van posisie-afhanklike, kinematiese leidings-algoritmes, die ontwikkeling van ’n Dinamiese Volgings-navigasie-algoritme en ’n deeglike analise van die interaksie van ’n lugraam met ’n aanloopbaan sodat outonome opstygprosedure van ’n vastevlerk vliegtuig bewerkstellig kan word. Die bogenoemde analise het gefokus op die laterale modus van ’n vastevlerk vliegtuig en is tweeledig behartig. Die eerste gedeelte het gefokus op die analise van die onderstel, terwyl die lugraam en die aerodinamiese effekte in die tweede gedeelte ondersoek is. Verskillende tipes terugvoerbeheer vir die outonome opstygprosedure is ondersoek om die mees geskikte tegniek te bepaal. Addisionele beheerders, wat deur die versnellingsbeheer gebaseerde opstygprosedure benodig word, is ontwerp. ’n Posisie gebaseerde kinematiese leidingsbeheerstruktuur om ’n groot persentasie van die vlugvermoë te benut, is ontwikkel. Terugvoer linearisering is toegepas om ’n lugspoedbeheerder , wat in staat is tot aggressiewe vlug, te ontwerp. ’n Dinamiese Volgingsnavigasie-algoritme wat in staat is om ’n bewegende grondvoorwerp te volg, is ontwikkel. Hierdie algoritme is geïmplementeer en bevestig deur nie-lineêre simulasie.
Gaum, Dunross Rudi. "Agressive flight control techniques for a fixed wing unmanned aerial vehicle". Stellenbosch : University of Stellenbosch, 2009. http://hdl.handle.net/10019.1/3112.
Pełny tekst źródłaThis thesis investigates aggressive all-attitude flight control systems. These are flight controllers capable of controlling an aircraft at any attitude and will enable the autonomous execution of manoeuvres such as high bank angle turns, steep climbs and aerobatic flight manoeuvres. This class of autopilot could be applied to carry out evasive combat manoeuvres or to create more efficient and realistic target drones. A model for the aircraft’s dynamics is developed in such a way that its high bandwidth specific force and moment model is split from its lower bandwidth kinematic model. This split is done at the aircraft’s specific acceleration and roll rate, which enables the design of simple, decoupled, linear attitude independent inner loop controllers to regulate these states. Two outer loop kinematic controllers are then designed to interface with these inner loop controllers to guide the aircraft through predefined reference trajectories. The first method involves the design of a linear quadratic regulator (LQR) based on the successively linearised kinematics, to optimally control the system. The second method involves specific acceleration matching (SAM) and results in a linear guidance controller that makes use of position based trajectories. These position based trajectories allow the aircraft’s velocity magnitude to be regulated independently of the trajectory tracking. To this end, two velocity regulation algorithms were developed. These involved methods of optimal control, implemented using dynamic programming, and energy analysis to regulate the aircraft’s velocity in a predictive manner and thereby providing significantly improved velocity regulation during aggressive aerobatic type manoeuvres. Hardware in the loop simulations and practical flight test data verify the theoretical results of all controllers presented
Redding, Joshua D. "Vision-based Target Localization from a Small, Fixed-wing Unmanned Air Vehicle". Diss., CLICK HERE for online access, 2005. http://contentdm.lib.byu.edu/ETD/image/etd895.pdf.
Pełny tekst źródłaLugo, Cárdenas Israel. "Autonomous take-off and landing for a fixed wing UAV". Thesis, Compiègne, 2017. http://www.theses.fr/2017COMP2364/document.
Pełny tekst źródłaThis work studies some of the most relevant problems in the direction of navigation and control presented in a particular class of mini‐aircraft. One of the main objectives is to build a lightweight and easy to deploy vehicle in a short period of time, an unmanned aerial vehicle capable of following a complete mission from take‐o⁄ to the following waypoints and complete the mission with an autonomous landing within a delimitated area using a graphical interface in a computer. The Trajectory Generation It is the part that tells the drone where it must travel and are generated by an algorithm built into the drone. The classic result of Dubins is used as a basis for the trajectory generation in 2D and we have extended it to the 3D trajectory generation. A path following strategy developed using the Lyapunov approach is presented to pilot a fixed wing drone across the desired path. The key concept behind the tracking controller is the reduction of the distance between the center of mass of the aircraft p and the point q on the path to zero, as well as the angle between the velocity vector and the vector tangent to the path. In order to test the techniques developed during the thesis a customized C # .Net application was developed called MAV3DSim (Multi‐Aerial Vehicle 3D Simulator). The MAV3DSim allows a read / write operation from / to the simulation engine from which we could receive all emulated sensor information and sent to the simulator. The MAV3DSim consists of three main elements, the simulation engine, the computation of the control law and the visualization interface. The simulation engine is in charge of the numeric integration of the dynamic equations of the vehicle, we can choose between a quadrotor and a xed wing drone for use in simulation. The visualization interface resembles a ground station type of application, where all variables of the vehicle s state vector can be represented on the same screen. The experimental platform functions as a test bed for the control law prototyping. The platform consists of a xed wing aircraft with a PX4 which has the autopilot function as well as a Raspberry PI mini‐computer which to the implementation of the generation and trajectory tracking. The complete system is capable of performing an autonomous take‐o⁄and landing, through waypoints. This is accomplished by using each of the strategies developed during the thesis. We have a strategy for take‐o⁄ and landing, which is generated by the navigationon part that is the trajectory generator. Once we have generated the path, it is used by the trajectory tracking strategy and withthat we have landing and take‐o⁄ autonomously
Smit, Samuel Jacobus Adriaan. "Autonomous landing of a fixed-wing unmanned aerial vehicle using differential GPS". Thesis, Stellenbosch : Stellenbosch University, 2013. http://hdl.handle.net/10019.1/80122.
Pełny tekst źródłaENGLISH ABSTRACT: This dissertation presents the design and practical demonstration of a flight control system (FCS) that is capable of autonomously landing a fixed-wing, unmanned aerial vehicle (UAV) on a stationary platform aided by a high-precision differential global positioning system. This project forms part of on-going research with the end goal of landing a fixed-wing UAV on a moving platform (for example a ship’s deck) in windy conditions. The main aim of this project is to be able to land the UAV autonomously, safely and accurately on the runway. To this end, an airframe was selected and equipped with an avionics payload. The equipped airframe’s stability derivatives were analysed via AVL and the moment of inertia was determined by the double pendulum method. The aircraft model was developed in such a way that the specific force and moment model (high bandwidth) is split from the point-mass dynamics of the aircraft (low bandwidth) [1]. The advantage of modelling the aircraft according to this unique method, results in a design that has simple decoupled linear controllers. The inner-loop controllers control the high-bandwidth specific accelerations and roll-rate, while the outer-loop controllers control the low-bandwidth point-mass dynamics. The performance of the developed auto-landing flight control system was tested in software-in-the-loop (SIL) and hardware-in-the-loop (HIL) simulations. A Monte Carlo non-linear landing simulation analysis showed that the FCS is expected to land the aircraft 95% of the time within a circle with a diameter of 1.5m. Practical flight tests verified the theoretical results of the developed controllers and the project was concluded with five autonomous landings. The aircraft landed within a circle with a 7.5m radius with the aiming point at the centre of the circle. In the practical landings the longitudinal landing error dominated the landing performance of the autonomous landing system. The large longitudinal error resulted from a climb rate bias on the estimated climb rate and a shallow landing glide slope.
AFRIKAANSE OPSOMMING: Hierdie skripsie stel die ontwikkeling en praktiese demonstrasie van ʼn self-landdende onbemande vastevlerkvliegtuigstelsel voor, wat op ʼn stilstaande platform te lande kan kom met behulp van ʼn uiters akkurate globale posisionering stelsel. Die projek maak deel uit van ʼn groter projek, waarvan die doel is om ʼn onbemande vastevlerkvliegtuig op ʼn bewegende platform te laat land (bv. op ʼn boot se dek) in onstuimige windtoestande. Die hoofdoel van die projek was om die vliegtuig so akkuraat as moontlik op die aanloopbaan te laat land. ʼn Vliegtuigraamwerk is vir dié doel gekies wat met gepaste avionica uitgerus is. Die uitgeruste vliegtuig se aerodinamsie eienskappe was geanaliseer met AVL en die traagheidsmoment is deur die dubbelependulum metode bepaal. Die vliegtuigmodel is op so ‘n manier onwikkel om [1] die spesifieke krag en momentmodel (vinnige reaksie) te skei van die puntmassadinamiek (stadige reaksie). Die voordeel van hierdie wyse van modulering is dat eenvoudige ontkoppelde beheerders ontwerp kon word. Die binnelusbeheerders beheer die vinnige reaksie-spesifieke versnellings en die rol tempo van die vliegtuig. Die buitelusbeheerders beheer die stadige reaksie puntmassa dinamiek. Die vliegbeheerstelsel is in sagteware-in-die-lus en hardeware-in-die-lus simulasies getoets. Die vliegtuig se landingseienskappe is ondersoek deur die uitvoer van Monte Carlo simulasies, die simulasie resultate wys dat die vliegtuig 95% van die tyd binne in ʼn sirkel met ʼn diameter van 1.5m geland het. Praktiese vlugtoetse het bevestig dat die teoretiese uitslae en die prakties uitslae ooreenstem. Die vliegtuig het twee suksesvolle outomatiese landings uitgevoer, waar dit binne ʼn 7.5m-radius sirkel geland het, waarvan die gewenste landingspunt die middelpunt was. In die outomatiese landings is die longitudinale landingsfout die grootse. Die groot longitudinale landingsfout is as gevolg van ʼn afset op die afgeskatte afwaartse spoed en ʼn lae landings gradiënt.
Alatorre, Sevilla Armando. "Landing of a fixed-wing unmanned aerial vehicle in a limited area". Electronic Thesis or Diss., Compiègne, 2024. http://www.theses.fr/2024COMP2801.
Pełny tekst źródłaThe development of this thesis consists of designing some control strategies that allow a fixedwing drone with classical configuration to perform a safe landing in a limited area. The main challenge is to reduce the aircraft’s airspeed avoiding stall conditions. The developed control strategies are focused on two approaches: the first approach consists of the designing airspeed reduction maneuvers for a fixed-wing vehicle to be captured by a recovery system and for a safe landing at a desired coordinate. The next approach is focused on landing a fixed-wing drone on a moving ground vehicle. A dynamic landing trajectory was designed to lead a fixedwing vehicle to the position of a ground vehicle, reaching its position in a defined distance. Moreover, this trajectory was used in a cooperative control design. The control strategy consists of the synchronization of both vehicles to reach the same position at a desired distance. The aerial vehicle tracks the dynamic landing trajectory, and the ground vehicle controls its speed. In addition, we will propose a control architecture with a different focus, where the ground vehicle performs the tracking task of the aerial vehicle’s position in order to be captured. And, the drone’s task is to track a descending flight until the top of the ground vehicle. However, considering the speed difference between both vehicles. Therefore, we propose a new control architecture defining that the aircraft performs an airspeed reduction strategy before beginning its landing stage. The aircraft will navigate to a minimum airspeed, thus, allowing the ground vehicle to reach the fixed-wing drone’s position by increasing its speed. The control laws of each strategy were determined by developing the Lyapunov stability analysis, thus, the stability is guaranteed in each flight stage. Finally, the control strategies were implemented on prototypes allowing us to validate their performance and obtain satisfactory results for safe landing of a fixed-wing drone with classical configuration
Puttige, Vishwas Ramadas Engineering & Information Technology Australian Defence Force Academy UNSW. "Neural network based adaptive control for autonomous flight of fixed wing unmanned aerial vehicles". Awarded by:University of New South Wales - Australian Defence Force Academy. Engineering & Information Technology, 2009. http://handle.unsw.edu.au/1959.4/43736.
Pełny tekst źródłaKsiążki na temat "Fixed-wing drone"
Sóbester, András, Andrew J. Keane i James P. Scanlan. Small Unmanned Fixed-Wing Aircraft Design: A Practical Approach. Wiley & Sons, Incorporated, John, 2017.
Znajdź pełny tekst źródłaSmall Unmanned Fixed-wing Aircraft Design: A Practical Approach. Wiley, 2017.
Znajdź pełny tekst źródłaSóbester, András, Andrew J. Keane i James P. Scanlan. Small Unmanned Fixed-Wing Aircraft Design: A Practical Approach. Wiley & Sons, Incorporated, John, 2017.
Znajdź pełny tekst źródłaSóbester, András, Andrew J. Keane i James P. Scanlan. Small Unmanned Fixed-Wing Aircraft Design: A Practical Approach. Wiley & Sons, Limited, John, 2017.
Znajdź pełny tekst źródła(Editor), Thomas J. Mueller, i American Institute of Aeronautics and Astronautics (Corporate Author), red. Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications (Progress in Astronautics and Aeronautics). AIAA (American Institute of Aeronautics & Ast, 2002.
Znajdź pełny tekst źródłaWich, Serge A., i Lian Pin Koh. Typology and anatomy of drones. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198787617.003.0002.
Pełny tekst źródłaCzęści książek na temat "Fixed-wing drone"
Rice, Devyn, Samah Ben Ayed, Stephen Johnstone i Abdessattar Abdelkefi. "Enhancement of Fixed-Wing Space Drone Performance Through Thermoelectric Power Generation". W Lecture Notes in Mechanical Engineering, 194–99. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-52071-7_27.
Pełny tekst źródłaRaza, Aamir, Muhammad Safdar, Muhammad Adnan Shahid, Fahd Rasul i Rehan Mehmood Sabir. "Applications of Drones in High-Tech Agriculture". W Advances in Environmental Engineering and Green Technologies, 88–108. IGI Global, 2023. http://dx.doi.org/10.4018/978-1-6684-9231-4.ch005.
Pełny tekst źródłaWaqas, Muhammad Mohsin, Sikandar Ali, Muthmainnah Muthmainnah, Muhammad Ahmad Rustam i Alex Khang. "Unmanned Aerial Vehicles (UAVs) in Modern Agriculture". W Advances in Environmental Engineering and Green Technologies, 109–30. IGI Global, 2023. http://dx.doi.org/10.4018/978-1-6684-9231-4.ch006.
Pełny tekst źródłaCollaro, Carolina, i Martin Herkommer. "Research, Application, and Innovation of LiDAR Technology in Spatial Archeology". W Encyclopedia of Information Science and Technology, Sixth Edition, 1–33. IGI Global, 2024. http://dx.doi.org/10.4018/978-1-6684-7366-5.ch054.
Pełny tekst źródłaStreszczenia konferencji na temat "Fixed-wing drone"
Seewald, Adam, Hector Garcia De Marina, Henrik Skov Midtiby i Ulrik Pagh Schultz. "Mechanical and Computational Energy Estimation of a Fixed-Wing Drone". W 2020 Fourth IEEE International Conference on Robotic Computing (IRC). IEEE, 2020. http://dx.doi.org/10.1109/irc.2020.00028.
Pełny tekst źródłaSafi'i, Imam, Achmad C. Asyary i Ony Arifianto. "Transition flight simulation of a hybrid VTOL fixed-wing drone". W NATIONAL CONFERENCE ON PHYSICS AND CHEMISTRY OF MATERIALS: NCPCM2020. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0061425.
Pełny tekst źródłaSuroso, Indreswari. "Peran Drone/Unmanned Aerial Vehicle (UAV) Buatan STTKD dalam Dunia Penerbangan". W Seminar Nasional Kebijakan Penerbangan dan Antariksa I. Bogor: In Media, 2017. http://dx.doi.org/10.30536/p.sinaskpa.i.12.
Pełny tekst źródłaBluman, James, Davonte Carter Vault, Wei Kang Soon, Ruth Talbott, Jonathan Willis, Andrew Kopeikin i Ekaterina Prosser. "Autonomous Drone Delivery From Airdrop Systems (ADDAS): Aerially Deploying Folding-Wing Drones for Ground Reconnaissance". W ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-24046.
Pełny tekst źródłaVidalie, Julien, Imane Bouhali, Faida Mhenni, Michel Batteux i Jean-Yves Choley. "Consistency of multiple system engineering models of a fixed wing drone". W 2022 IEEE International Symposium on Systems Engineering (ISSE). IEEE, 2022. http://dx.doi.org/10.1109/isse54508.2022.10005317.
Pełny tekst źródłaCarlos, Espinoza, Villasante Jorge i Leonardo Vinces. "Design of a fixed-wing drone for blood packet delivery applications". W 21st LACCEI International Multi-Conference for Engineering, Education and Technology (LACCEI 2023): “Leadership in Education and Innovation in Engineering in the Framework of Global Transformations: Integration and Alliances for Integral Development”. Latin American and Caribbean Consortium of Engineering Institutions, 2023. http://dx.doi.org/10.18687/laccei2023.1.1.806.
Pełny tekst źródłaSaemi, Farid, Constandinos Mitsingas, Owen Dunston i Moble Benedict. "In-flight Measurements and Validation of Electric Powertrain Models". W Vertical Flight Society 79th Annual Forum & Technology Display. The Vertical Flight Society, 2023. http://dx.doi.org/10.4050/f-0079-2023-18065.
Pełny tekst źródłaCaruccio, Danielle, Meaghan Rush, Peter Smith, James Carroll, Peter Warwick, Eric Smith, Caleb Fischer i in. "Design, Fabrication, and Testing of the Fixed-Wing Air and Underwater Drone". W 17th AIAA Aviation Technology, Integration, and Operations Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2017. http://dx.doi.org/10.2514/6.2017-4447.
Pełny tekst źródłaAlatorre, A., P. Castillo i R. Lozano. "Least Airspeed Reduction Strategy & Flight Recuperation of a Fixed-Wing Drone". W 2021 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, 2021. http://dx.doi.org/10.1109/icuas51884.2021.9476680.
Pełny tekst źródłaDong, Jingyi, i Datong Liu. "Sensor Data Prediction for Fixed-wing Drone Based on Online Sequential Learning". W 2022 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). IEEE, 2022. http://dx.doi.org/10.1109/i2mtc48687.2022.9806574.
Pełny tekst źródłaRaporty organizacyjne na temat "Fixed-wing drone"
Grand-Clément, Sarah, i Theò Bajon. Uncrewed Aerial Systems: A Primer. UNIDIR, październik 2022. http://dx.doi.org/10.37559/caap/22/erc/12.
Pełny tekst źródłaChristensen, Lance. PR-459-133750-R03 Fast Accurate Automated System To Find And Quantify Natural Gas Leaks. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), listopad 2019. http://dx.doi.org/10.55274/r0011633.
Pełny tekst źródła