Gotowa bibliografia na temat „Fixed-time control”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Fixed-time control”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Fixed-time control"
Muralidharan, Ajith, Ramtin Pedarsani i Pravin Varaiya. "Analysis of fixed-time control". Transportation Research Part B: Methodological 73 (marzec 2015): 81–90. http://dx.doi.org/10.1016/j.trb.2014.12.002.
Pełny tekst źródłaHAYASHI, Takuya, i Hisakazu NAKAMURA. "Fixed-time Control Using Locally Semiconcave Control Lyapunov Function". Transactions of the Society of Instrument and Control Engineers 57, nr 11 (2021): 478–87. http://dx.doi.org/10.9746/sicetr.57.478.
Pełny tekst źródłaLi, Huijie, i Yuanli Cai. "On SFTSM control with fixed-time convergence". IET Control Theory & Applications 11, nr 6 (14.04.2017): 766–73. http://dx.doi.org/10.1049/iet-cta.2016.1457.
Pełny tekst źródłaWang, Huanqing, Hanxue Yue, Siwen Liu i Tieshan Li. "Adaptive fixed-time control for Lorenz systems". Nonlinear Dynamics 102, nr 4 (14.11.2020): 2617–25. http://dx.doi.org/10.1007/s11071-020-06061-z.
Pełny tekst źródłaMercado-Uribe, Angel, i Jaime A. Moreno. "Fixed-Time Homogeneous Integral Controller". IFAC-PapersOnLine 51, nr 25 (2018): 377–82. http://dx.doi.org/10.1016/j.ifacol.2018.11.136.
Pełny tekst źródłaMoulay, Emmanuel, Vincent Léchappé, Emmanuel Bernuau, Michael Defoort i Franck Plestan. "Fixed-time sliding mode control with mismatched disturbances". Automatica 136 (luty 2022): 110009. http://dx.doi.org/10.1016/j.automatica.2021.110009.
Pełny tekst źródłaWang, Zeng, Yuxin Su i Liyin Zhang. "Fixed-time attitude tracking control for rigid spacecraft". IET Control Theory & Applications 14, nr 5 (26.03.2020): 790–99. http://dx.doi.org/10.1049/iet-cta.2019.0623.
Pełny tekst źródłaLopez, Anthony, Wenlong Jin i Mohammad Abdullah Al Faruque. "Security analysis for fixed-time traffic control systems". Transportation Research Part B: Methodological 139 (wrzesień 2020): 473–95. http://dx.doi.org/10.1016/j.trb.2020.07.002.
Pełny tekst źródłaLiu, Xinggui, i Xiaofeng Liao. "Fixed-time stabilization control for port-Hamiltonian systems". Nonlinear Dynamics 96, nr 2 (kwiecień 2019): 1497–509. http://dx.doi.org/10.1007/s11071-019-04867-0.
Pełny tekst źródłaZou, An-Min, Krishna Dev Kumar i Anton H. J. de Ruiter. "Fixed-time attitude tracking control for rigid spacecraft". Automatica 113 (marzec 2020): 108792. http://dx.doi.org/10.1016/j.automatica.2019.108792.
Pełny tekst źródłaRozprawy doktorskie na temat "Fixed-time control"
Lopez, Ramirez Francisco. "Control and estimation in finite-time and in fixed-time via implicit Lyapunov functions". Thesis, Lille 1, 2018. http://www.theses.fr/2018LIL1I063/document.
Pełny tekst źródłaThis work presents new results on analysis and synthesis of finite-time and fixed-time stable systems, a type of dynamical systems where exact convergence to an equilibrium point is guaranteed in a finite amount of time. In the case of fixed-time stable system, this is moreover achieved with an upper bound on the settling-time that does not depend on the system’s initial condition.Chapters 2 and 3 focus on theoretical contributions; the former presents necessary and sufficient conditions for fixed-time stability of continuous autonomous systems whereas the latter introduces a framework that gathers ISS Lyapunov functions, finite-time and fixed-time stability analysis and the implicit Lyapunov function approach in order to study and determine the robustness of this type of systems.Chapters 4 and 5 deal with more practical aspects, more precisely, the synthesis of finite-time and fixed-time controllers and observers. In Chapter 4, finite-time and fixed-time convergent observers are designed for linear MIMO systems using the implicit approach. In Chapter 5, homogeneity properties and the implicit approach are used to design a fixed-time output controller for the chain of integrators. The results obtained were verified by numerical simulations and Chapter 4 includes performance tests on a rotary pendulum
Laliotis, Dimitrios. "Financial time series prediction and stochastic control of trading decisions in the fixed income markets". Thesis, Imperial College London, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.243831.
Pełny tekst źródłaChow, Chee-Seng. "Multigrid algorithms and complexity results for discrete-time stochastic control and related fixed-point problems". Thesis, Massachusetts Institute of Technology, 1989. http://hdl.handle.net/1721.1/14254.
Pełny tekst źródłaIncludes bibliographical references (leaves 159-162).
by Chee-Seng Chow.
Ph.D.
Abdel-Jalil, Awab. "Stimulus Control Effects of Changes in Schedules of Reinforcement". Thesis, University of North Texas, 2020. https://digital.library.unt.edu/ark:/67531/metadc1707360/.
Pełny tekst źródłaVölker, Marten [Verfasser]. "Linear Robust Control of a Nonlinear and Time-varying Process : A Two-step Approach to the Multi-objective Synthesis of Fixed-order Controllers / Marten Völker". Aachen : Shaker, 2007. http://d-nb.info/1164339648/34.
Pełny tekst źródłaAnggraeni, Pipit. "Consensus décentralisé de type meneur/suiveur pour une flotte de robots coopératifs soumis à des contraintes temporelles". Thesis, Valenciennes, 2019. http://www.theses.fr/2019VALE0012/document.
Pełny tekst źródłaNowadays, robots have become increasingly important to investigate hazardous and dangerous environments. A group of collaborating robots can often deal with tasks that are difficult, or even impossible, to be accomplished by a single robot. Multiple robots working in a cooperative manner is called as a Multi-Agent System (MAS). The interaction between agents to achieve a global task is a key in cooperative control. Cooperative control of MASs poses significant theoretical and practical challenges. One of the fundamental topics in cooperative control is the consensus where the objective is to design control protocols between agents to achieve a state agreement. This thesis improves the navigation scheme for MASs, while taking into account some practical constraints (robot model and temporal constraints) in the design of cooperative controllers for each agent, in a fully decentralized way. In this thesis, two directions are investigated. On one hand, the convergence rate is an important performance specification to design the controller for a dynamical system. As an important performance measure for the coordination control of MASs, fast convergence is always pursued to achieve better performance and robustness. Most of the existing consensus algorithms focus on asymptotic convergence, where the settling time is infinite. However, many applications require a high speed convergence generally characterized by a finite-time control strategy. Moreover, finite-time control allows some advantageous properties but the settling time depend on the initial states of agents. The objective here is to design a fixed-time leader-follower consensus protocol for MASs described in continuous-time. This problem is studied using the powerful theory of fixed-time stabilization, which guarantee that the settling time is upper bounded regardless to the initial conditions. Sliding mode controllers and sliding mode observers are designed for each agent to solve the fixed-time consensus tracking problem when the leader is dynamic. On the other hand, compared with continuous-time systems, consensus problem in a discrete-time framework is more suitable for practical applications due to the limitation of computational resources for each agent. Model Predictive Control (MPC) has the ability to handle control and state constraints for discrete-time systems. In this thesis, this method is applied to deal with the consensus problem in discrete-time by letting each agent to solve, at each step, a constrained optimal control problem involving only the state of neighboring agents. The tracking performances are also improved in this thesis by adding new terms in the classical MPC technique. The proposed controllers will be simulated and implemented on a team of multiple Mini-Lab Enova Robots using ROS (Robotic Operating System) which is an operating system for mobile robots. ROS provides not only standard operating system services but also high-level functionalities. In this thesis, some solutions corresponding to problem of connection between multiple mobile robots in a decentralized way for a wireless robotic network, of tuning of the sampling periods and control parameters are also discussed
Hakala, Tim. "Settling-Time Improvements in Positioning Machines Subject to Nonlinear Friction Using Adaptive Impulse Control". BYU ScholarsArchive, 2006. https://scholarsarchive.byu.edu/etd/1061.
Pełny tekst źródłaChu, Xing. "Commande distribuée, en poursuite, d'un système multi-robots non holonomes en formation". Thesis, Ecole centrale de Lille, 2017. http://www.theses.fr/2017ECLI0035/document.
Pełny tekst źródłaThe main aim of this thesis is to study the distributed tracking control problem for the multi-robot formation systems with nonholonomic constraint, of which the control objective it to drive a team of unicycle-type mobile robots to form one desired formation configuration with its centroid moving along with another dynamic reference trajectory, which can be specified by the virtual leader or human. We consider several problems in this point, ranging from finite-time stability andfixed-time stability, event-triggered communication and control mechanism, kinematics and dynamics, continuous-time systems and hybrid systems. The tracking control problem has been solved in this thesis via developing diverse practical distributed controller with the consideration of faster convergence rate, higher control accuracy, stronger robustness, explicit and independent convergence time estimate, less communication cost and energy consumption.In the first part of the thesis, we first study the finite-time stability for the multi-robot formation systems in Chapter 2. To improve the pior results, a novel class of finite-time controller is further proposed in Chapter 3, which is also called fixed-time controller. The dynamics of nonholonomic multi-robot formation systems is considered in Chapter 4. In the second part, we first investigate the event-triggered communication and control mechanism on the nonholonomic multi-robot formation tracking systems in Chapter 5. Moreover, in order to develop a digital implement scheme, we propose another class of periodic event-triggered controller based on fixed-time observer in Chapter 6
OTSUBO, Shigeru, i Yumeka HIRANO. "Poverty-Growth-Inequality Triangle under Globalization: Time Dimensions and the Control Factors of the Impacts of Integration". 名古屋大学大学院国際開発研究科, 2012. http://hdl.handle.net/2237/16949.
Pełny tekst źródłaPeyre, Thierry. "Evaluation de performances sur le standard IEEE802.16e WiMAX". Phd thesis, Université d'Avignon, 2008. http://tel.archives-ouvertes.fr/tel-00796477.
Pełny tekst źródłaKsiążki na temat "Fixed-time control"
Zuo, Zongyu, Qing-Long Han i Boda Ning. Fixed-Time Cooperative Control of Multi-Agent Systems. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20279-8.
Pełny tekst źródłaMichailidis, Michail G., Kimon P. Valavanis i Matthew J. Rutherford. Nonlinear Control of Fixed-Wing UAVs with Time-Varying and Unstructured Uncertainties. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-40716-2.
Pełny tekst źródłaHan, Qing-Long, Zongyu Zuo i Boda Ning. Fixed-Time Cooperative Control of Multi-Agent Systems. Springer International Publishing AG, 2020.
Znajdź pełny tekst źródłaHan, Qing-Long, Zongyu Zuo i Boda Ning. Fixed-Time Cooperative Control of Multi-Agent Systems. Springer, 2019.
Znajdź pełny tekst źródłaGlobal Practices on Road Traffic Signal Control: Fixed-Time Control at Isolated Intersections. Elsevier, 2019.
Znajdź pełny tekst źródłaNakamura, Hideki, Manfred Boltze, Keshuang Tang i Zong Tian. Global Practices on Road Traffic Signal Control: Fixed-Time Control at Isolated Intersections. Elsevier, 2019.
Znajdź pełny tekst źródłaValavanis, Kimon P., Michail G. Michailidis i Matthew J. Rutherford. Nonlinear Control of Fixed-Wing UAVs with Time-Varying and Unstructured Uncertainties. Springer, 2020.
Znajdź pełny tekst źródłaValavanis, Kimon P., Michail G. Michailidis i Matthew J. Rutherford. Nonlinear Control of Fixed-Wing UAVs with Time-Varying and Unstructured Uncertainties. Springer International Publishing AG, 2021.
Znajdź pełny tekst źródłaSmith, Lisa Wynne, Laurence Totelin, Iona McCleery, Elaine Leong, Lisa Wynne Smith, Jonathan Reinarz, Todd Meyers i Claudia Stein, red. A Cultural History of Medicine in the Enlightenment. Bloomsbury Publishing Plc, 2021. http://dx.doi.org/10.5040/9781474206037.
Pełny tekst źródłaStory, Joanna. Lands and Lights in Early Medieval Rome. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198777601.003.0025.
Pełny tekst źródłaCzęści książek na temat "Fixed-time control"
Hull, David G. "Fixed Final Time Guidance". W Optimal Control Theory for Applications, 199–220. New York, NY: Springer New York, 2003. http://dx.doi.org/10.1007/978-1-4757-4180-3_12.
Pełny tekst źródłaHull, David G. "Fixed Final Time: Second Differential". W Optimal Control Theory for Applications, 173–98. New York, NY: Springer New York, 2003. http://dx.doi.org/10.1007/978-1-4757-4180-3_11.
Pełny tekst źródłaHull, David G. "Fixed Final Time: First Differential". W Optimal Control Theory for Applications, 140–65. New York, NY: Springer New York, 2003. http://dx.doi.org/10.1007/978-1-4757-4180-3_9.
Pełny tekst źródłaLi, Dongyu, Shuzhi Sam Ge i Tong Heng Lee. "Fixed-Time-Synchronized Control with Settling Time Estimation". W Time-Synchronized Control: Analysis and Design, 133–63. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-3089-7_6.
Pełny tekst źródłaZuo, Zongyu, Qing-Long Han i Boda Ning. "Fixed-Time Stability and Stabilization". W Fixed-Time Cooperative Control of Multi-Agent Systems, 17–44. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20279-8_2.
Pełny tekst źródłaHull, David G. "Fixed Final Time: Tests for a Minimum". W Optimal Control Theory for Applications, 166–72. New York, NY: Springer New York, 2003. http://dx.doi.org/10.1007/978-1-4757-4180-3_10.
Pełny tekst źródłaLi, Dongyu, Shuzhi Sam Ge i Tong Heng Lee. "Fixed-Time-Synchronized Control with Singularity Avoidance". W Time-Synchronized Control: Analysis and Design, 101–31. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-3089-7_5.
Pełny tekst źródłaLiu, Bojun, Mingshan Hou i Wencong Wang. "Nonsingular Fixed-Time Integrated Guidance and Control". W Lecture Notes in Electrical Engineering, 3113–23. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8155-7_260.
Pełny tekst źródłaSankaranarayanan, Sriram, Henny B. Sipma i Zohar Manna. "Fixed Point Iteration for Computing the Time Elapse Operator". W Hybrid Systems: Computation and Control, 537–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11730637_40.
Pełny tekst źródłaGuo, Ge, Zhenyu Gao i Pengfei Zhang. "Command-Filtered Fixed-Time Tracking Control of AMVs". W Stabilization, Tracking and Formation Control of Autonomous Marine Vessels, 109–33. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-8109-7_5.
Pełny tekst źródłaStreszczenia konferencji na temat "Fixed-time control"
Yuan, Li, Chuanjiang Li, Boyan Jiang i Guangfu Ma. "Fixed-time spacecraft attitude stabilization using homogeneous method". W 2016 UKACC 11th International Conference on Control (CONTROL). IEEE, 2016. http://dx.doi.org/10.1109/control.2016.7737656.
Pełny tekst źródłaAlsuwaidan, Mohammad, i Miroslav Krstic. "Fixed-Time Inflection Point Seeking". W 2022 American Control Conference (ACC). IEEE, 2022. http://dx.doi.org/10.23919/acc53348.2022.9867648.
Pełny tekst źródłaAlturbeh, Hamid, i James F. Whidborne. "Real-time obstacle collision avoidance for fixed wing aircraft using B-splines". W 2014 UKACC International Conference on Control (CONTROL). IEEE, 2014. http://dx.doi.org/10.1109/control.2014.6915125.
Pełny tekst źródłaLiu, Yang, Hong Yue i Wei Wang. "Fixed-Time Stabilization of Second-Order Systems with Unknown Nonlinear Inherent Dynamics". W 2018 UKACC 12th International Conference on Control (CONTROL). IEEE, 2018. http://dx.doi.org/10.1109/control.2018.8516778.
Pełny tekst źródłaKeel, L. H., i S. P. Bhattacharyya. "Fixed order multivariable discrete-time control". W 2009 Joint 48th IEEE Conference on Decision and Control (CDC) and 28th Chinese Control Conference (CCC). IEEE, 2009. http://dx.doi.org/10.1109/cdc.2009.5399726.
Pełny tekst źródłaLiu, Xiwei, Wenlian Lu i Tianping Chen. "Finite-time and fixed-time stability and synchronization". W 2016 35th Chinese Control Conference (CCC). IEEE, 2016. http://dx.doi.org/10.1109/chicc.2016.7554624.
Pełny tekst źródłaPoveda, Jorge I., i Miroslav Krstic. "Fixed-Time Gradient-Based Extremum Seeking". W 2020 American Control Conference (ACC). IEEE, 2020. http://dx.doi.org/10.23919/acc45564.2020.9148026.
Pełny tekst źródłaLee, Junsoo, i Wassim M. Haddad. "Fixed Time Stability of Discrete-Time Stochastic Dynamical Systems". W 2023 American Control Conference (ACC). IEEE, 2023. http://dx.doi.org/10.23919/acc55779.2023.10156569.
Pełny tekst źródłaMutoh, Yasuhiko, i Tomohiro Hara. "Stability of the observer-based pole placement for discrete time-varying non-lexicographically-fixed systems". W 2012 UKACC International Conference on Control (CONTROL). IEEE, 2012. http://dx.doi.org/10.1109/control.2012.6334635.
Pełny tekst źródłaJian, Wang, Qiu Feng i Cheng Xiao-ming. "The optimal guidance method for fixed-time and fixed-point orbit injecting". W 2016 Chinese Control and Decision Conference (CCDC). IEEE, 2016. http://dx.doi.org/10.1109/ccdc.2016.7531740.
Pełny tekst źródłaRaporty organizacyjne na temat "Fixed-time control"
Morales, Leonardo Fabio, i Eleonora Dávalos. Diffusion of crime control benefits: Forced eradication and coca crops in Colombia. Banco de la República Colombia, listopad 2022. http://dx.doi.org/10.32468/dtseru.314.
Pełny tekst źródłaBonilla-Mejía, Leonardo, Mauricio Villamizar-Villegas i María Alejandra Ruiz-Sánchez. The Leading Role of Bank Supply Shocks. Banco de la República de Colombia, sierpień 2022. http://dx.doi.org/10.32468/be.1205.
Pełny tekst źródłaWillson. L51709 Development-Test Electronic Gas Admission for Large Bore Engines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), sierpień 1994. http://dx.doi.org/10.55274/r0010114.
Pełny tekst źródłaKyllönen, Katriina, Karri Saarnio, Ulla Makkonen i Heidi Hellén. Verification of the validity of air quality measurements related to the Directive 2004/107/EC in 2019-2020 (DIRME2019). Finnish Meteorological Institute, 2020. http://dx.doi.org/10.35614/isbn.9789523361256.
Pełny tekst źródłaSchling, Maja, Roberto Guerrero Compeán, Nicolás Pazos, Allison Bailey, Katie Arkema i Mary Ruckelshaus. The Economic Impact of Sargassum: Evidence from the Mexican Coast. Inter-American Development Bank, wrzesień 2022. http://dx.doi.org/10.18235/0004470.
Pełny tekst źródłaWeissinger, Rebecca. Trends in water quality at Bryce Canyon National Park, water years 2006–2021. Redaktor Alice Wondrak Biel. National Park Service, listopad 2022. http://dx.doi.org/10.36967/2294946.
Pełny tekst źródła