Gotowa bibliografia na temat „Fission yeast”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Fission yeast”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Fission yeast"

1

Cortés, Juan C. G., Mariona Ramos, Masako Osumi, Pilar Pérez i Juan Carlos Ribas. "Fission yeast septation". Communicative & Integrative Biology 9, nr 4 (12.05.2016): e1189045. http://dx.doi.org/10.1080/19420889.2016.1189045.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Murray, Andrew W. "Sunburnt fission yeast". Nature 363, nr 6427 (maj 1993): 302. http://dx.doi.org/10.1038/363302a0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Xu, Dan-Dan, i Li-Lin Du. "Fission Yeast Autophagy Machinery". Cells 11, nr 7 (24.03.2022): 1086. http://dx.doi.org/10.3390/cells11071086.

Pełny tekst źródła
Streszczenie:
Autophagy is a conserved process that delivers cytoplasmic components to the vacuole/lysosome. It plays important roles in maintaining cellular homeostasis and conferring stress resistance. In the fission yeast Schizosaccharomyces pombe, autophagy is important for cell survival under nutrient depletion and ER stress conditions. Experimental analyses of fission yeast autophagy machinery in the last 10 years have unveiled both similarities and differences in autophagosome biogenesis mechanisms between fission yeast and other model eukaryotes for autophagy research, in particular, the budding yeast Saccharomyces cerevisiae. More recently, selective autophagy pathways that deliver hydrolytic enzymes, the ER, and mitochondria to the vacuole have been discovered in fission yeast, yielding novel insights into how cargo selectivity can be achieved in autophagy. Here, we review the progress made in understanding the autophagy machinery in fission yeast.
Style APA, Harvard, Vancouver, ISO itp.
4

Vicente-Soler, Jero, Teresa Soto, Alejandro Franco, José Cansado i Marisa Madrid. "The Multiple Functions of Rho GTPases in Fission Yeasts". Cells 10, nr 6 (7.06.2021): 1422. http://dx.doi.org/10.3390/cells10061422.

Pełny tekst źródła
Streszczenie:
The Rho family of GTPases represents highly conserved molecular switches involved in a plethora of physiological processes. Fission yeast Schizosaccharomyces pombe has become a fundamental model organism to study the functions of Rho GTPases over the past few decades. In recent years, another fission yeast species, Schizosaccharomyces japonicus, has come into focus offering insight into evolutionary changes within the genus. Both fission yeasts contain only six Rho-type GTPases that are spatiotemporally controlled by multiple guanine–nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs), and whose intricate regulation in response to external cues is starting to be uncovered. In the present review, we will outline and discuss the current knowledge and recent advances on how the fission yeasts Rho family GTPases regulate essential physiological processes such as morphogenesis and polarity, cellular integrity, cytokinesis and cellular differentiation.
Style APA, Harvard, Vancouver, ISO itp.
5

Chang, Fred, i Paul Nurse. "How Fission Yeast Fission in the Middle". Cell 84, nr 2 (styczeń 1996): 191–94. http://dx.doi.org/10.1016/s0092-8674(00)80973-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Johnson, Byron F., L. C. Sowden, Teena Walker, Bong Y. Yoo i Gode B. Calleja. "Use of electron microscopy to characterize the surfaces of flocculent and nonflocculent yeast cells". Canadian Journal of Microbiology 35, nr 12 (1.12.1989): 1081–86. http://dx.doi.org/10.1139/m89-181.

Pełny tekst źródła
Streszczenie:
The surfaces of flocculent and nonflocculent yeast cells have been examined by electron microscopy. Nonextractive preparative procedures for scanning electron microscopy allow comparison in which sharp or softened images of surface details (scars, etc.) are the criteria for relative abundance of flocculum material. Asexually flocculent budding-yeast cells cannot be distinguished from nonflocculent budding-yeast cells in scanning electron micrographs because the scar details of both are well resolved, being hard and sharp. On the other hand, flocculent fission-yeast cells are readily distinguished from nonflocculent cells because fission scars are mostly soft or obscured on flocculent cells, but sharp on nonflocculent cells. Sexually and asexually flocculent fission-yeast cells cannot be distinguished from one another as both are heavily clad in "mucilaginous" or "hairy" coverings. Examination of lightly extracted and heavily extracted flocculent fission-yeast cells by transmission electron microscopy provides micrographs consistent with the scanning electron micrographs.Key words: flocculation, budding yeast, fission yeast, scanning, transmission.
Style APA, Harvard, Vancouver, ISO itp.
7

Emami, Parvaneh, i Masaru Ueno. "3,3’-Diindolylmethane induces apoptosis and autophagy in fission yeast". PLOS ONE 16, nr 12 (10.12.2021): e0255758. http://dx.doi.org/10.1371/journal.pone.0255758.

Pełny tekst źródła
Streszczenie:
3,3’-Diindolylmethane (DIM) is a compound derived from the digestion of indole-3-carbinol, found in the broccoli family. It induces apoptosis and autophagy in some types of human cancer. DIM extends lifespan in the fission yeast Schizosaccharomyces pombe. The mechanisms by which DIM induces apoptosis and autophagy in humans and expands lifespan in fission yeasts are not fully understood. Here, we show that DIM induces apoptosis and autophagy in log-phase cells, which is dose-dependent in fission yeast. A high concentration of DIM disrupted the nuclear envelope (NE) structure and induced chromosome condensation at an early time point. In contrast, a low concentration of DIM induced autophagy but did not disrupt NE structure. The mutant defective in autophagy was more sensitive to a low concentration of DIM, demonstrating that the autophagic pathway contributes to the survival of cells against DIM. Moreover, our results showed that the lem2 mutant is more sensitive to DIM. NE in the lem2 mutant was disrupted even at the low concentration of DIM. Our results demonstrate that the autophagic pathway and NE integrity are important to maintain viability in the presence of a low concentration of DIM. The mechanism of apoptosis and autophagy induction by DIM might be conserved in fission yeast and humans. Further studies will contribute to the understanding of the mechanism of apoptosis and autophagy by DIM in fission yeast and humans.
Style APA, Harvard, Vancouver, ISO itp.
8

Golubev, W. I. "Mycocinogeny in fission yeast". Микология и фитопатология 54, nr 2 (2020): 150–52. http://dx.doi.org/10.31857/s002636482002004x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Nielsen, Olaf. "Fission yeast goes synthetic". Nature Methods 4, nr 10 (październik 2007): 777–78. http://dx.doi.org/10.1038/nmeth1007-777.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Millar, Jonathan. "Recognition for fission yeast". Trends in Cell Biology 10, nr 2 (luty 2000): 81–82. http://dx.doi.org/10.1016/s0962-8924(99)01702-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Fission yeast"

1

Mata, Monteagudo Juan Ignacio. "Fission yeast cell polarity". Thesis, University College London (University of London), 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.265407.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Spink, Karen Gillian. "Telomeric proteins in fission yeast". Thesis, University of Nottingham, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.312057.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Hansen, Karen. "3' end formation in fission yeast". Thesis, University of Oxford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.389053.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Beck, Timothy Joseph. "A phenotype ontology for fission yeast". Thesis, University of Sussex, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.488618.

Pełny tekst źródła
Streszczenie:
This work examines the suitability of two different ontology approaches for the annotation of Schizosaccharomyces pombe (fission yeast) phenotypes derived from a number of screens of two fission yeast strain libraries- a temperature-sensitive library and an insertional library.
Style APA, Harvard, Vancouver, ISO itp.
5

Woollard, Alison. "Cell cycle control in fission yeast". Thesis, University of London, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318479.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Abbott, Johanna. "Novel kinetochore factors in fission yeast". Thesis, University of Edinburgh, 2004. http://hdl.handle.net/1842/11825.

Pełny tekst źródła
Streszczenie:
The fission yeast centromere is packaged as transcriptionally silent heterochromatin which serves as a platform for kinetochore assembly. The centromere consists of two distinct domains; the outer repeats and the central core. It has been shown previously that these regions associate with distinct sets of proteins, for example, the fission yeast homologue of CENP-A, Cnp1p, is present at the central core, together with Mis6 and Mis12, whilst the heterochromatin protein Swi6 associates with the outer repeats. Marker genes placed in the centromere are transcriptionally silenced. This feature of the fission yeast centromere was utilised to screen for potential kinetochore components or regulators. Mutants with alleviated silencing at the central core were isolated and seven complementation groups identified; sim1 to 7, for silencing in the middle of the centromere. All the sim mutants display chromosome segregation defects and elevated rates of loss of a non-essential minichromosome. This study describes the ongoing characterisation of sims 1,6 and 7. GFP tagged Sim1 associates with the central core of the centromere suggesting that Sim1 is also a novel kinetochore protein. Our working model is that Sim1 may be required for the assembly of Cnp1p chromatin. The sim6 mutant is unusual as it alleviates silencing at both the central core and outer repeat regions. In the sim7 mutant at the restrictive temperature, Cnp1, a crucial component of the centromere, shows greatly reduced localisation.
Style APA, Harvard, Vancouver, ISO itp.
7

Atkinson, S. R. "The fission yeast non-coding transcriptome". Thesis, University College London (University of London), 2014. http://discovery.ucl.ac.uk/1457868/.

Pełny tekst źródła
Streszczenie:
Long non-coding RNAs (lncRNAs) are emerging as important regulators of gene expression, although it remains unclear to what extent they contribute overall to the information flow from genotype to phenotype. Using strand-specific RNAsequencing, I identify thousands of novel unstable, or cryptic, lncRNAs in Schizosaccharomyces pombe. The nuclear exosome, the RNAi pathway and the cytoplasmic exonuclease Exo2 represent three key pathways regulating lncRNAs in S. pombe, defining the overlapping classes of CUTs, RUTs and XUTs, respectively. The nuclear exosome and the RNAi pathway act cooperatively to control nuclear lncRNA expression, while the cytoplasmic Exo2 pathway is more distinct. Impairing both the nuclear exosome and the cytoplasmic exonuclease Exo2 is lethal in S. pombe. Importantly, I show that CUTs, RUTs and XUTs are stabilised under physiologically relevant growth conditions, with three key groups emerging: late meiotic RUTs/XUTs, early meiotic CUTs and quiescent CUTs. Late meiotic RUTs/XUTs tend to be antisense to protein-coding genes, and anti-correlate in expression with their sense loci. In contrast, early meiotic and quiescent CUTs tend to be transcribed divergently from protein-coding genes and positively correlate in expression with their mRNA partners. The current study provides an in-depth survey of the lncRNA repertoire of S. pombe, and the pathways that regulate their expression. It seems likely that any regulatory functions mediated by most of these lncRNAs are in cis, nuclear and cotranscriptional. The current study provides a rich and comprehensive resource for future studies of lncRNA function.
Style APA, Harvard, Vancouver, ISO itp.
8

Scheffler, Kathleen. "Microtubule-dependent nuclear congression in fission yeast and a novel factor in cellular morphogenesis of fission yeast". Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066510/document.

Pełny tekst źródła
Streszczenie:
(I) J'ai étudié les mécanismes contrôlant la congression des noyaux pendant la conjugaison de la levure S. pombe. A l'aide d'imagerie à long terme basée sur la microfluidique, j'ai mesuré la durée précise de la congression nucléaire et démontré que deux moteurs moléculaires des MTs, la dynéine et la kinésine-14 Klp2 contribuent à ce processus, dans des voies parallèles. La dynéine s’associe aux SPBs. Son niveau au SPB dépend de la chaine légère intermédiaire Dli1 qui pourrait potentiellement stabiliser le complexe dynéine et est requise pour la congression. Klp2 se localise sur les MTs. La localisation différentielle des deux moteurs suggère des rôles distincts pour tirer les noyaux l'un vers l'autre. Klp2 pourrait induire le glissement de MTs antiparallèles émanant des SPBs, alors que la dynéine localisée au SPB pourrait tirer sur des MTs émanant du SPB opposé.(II) J'ai caractérisé un nouveau facteur morphogénétique, l’AAA+-ATPase Knk1, qui promeut la croissance linéaire chez S. pombe. L’absence de Knk1 provoque la formation d’un coude à proximité des extrémités cellulaires. Ce défaut ne résulte pas de défauts des MTs, qui participent à la linéarité de la croissance. Knk1 se localise aux extrémités de la cellule indépendamment des MTs et des câbles d’actine. Cette localisation requiert son N-terminus et est renforcée quand le domaine ATPase C-terminal lie l’ATP. La concentration de Knk1 aux extrémités est aussi contrôlée par Sla2 et Cdc42, de manière anti-correlée, et indépendamment de l’endocytose. Enfin, Knk1 oscille périodiquement entre les deux extrémités, indépendamment des oscillations de Cdc42, suggérant l'existence d'au moins deux systèmes oscillatoires séparés
(I) I studied the molecular mechanisms underlying nuclear congression during fission yeast conjugation. Using microfluidic-based long-term imaging, I defined the precise timing of nuclear congression compared to cell mating and found that two MT molecular motors, dynein and the kinesin-14 Klp2 promote nuclear congression in parallel pathways. Dynein associates with SPBs. Dynein level at SPBs is controlled by the light intermediate chain Dli1 that may promote stabilization of the dynein complex and is essential for dynein-dependent nuclear congression, while dynactin is surprisingly not required for this process. Klp2 localizes along MTs. These differential localization patterns suggest distinct roles for the two motors in pulling the nuclei together: Klp2 may slide anti-parallel MTs emanating from the SPBs, while dynein at the SPB may pull on MTs emanating from the opposite SPB.(II) I characterized a novel morphogenetic factor, the AAA+-ATPase Knk1, supporting linear growth in fission yeast. knk1Δ cells display a kink close to cell tips, a unique shape phenotype that is neither caused by defects in behavior of MTs that promote linear extension. Knk1 localizes to cell tip independently of MTs and actin cables. This localization is mediated by Knk1 N-terminus and enhanced upon ATP binding to Knk1 C-terminal ATPase domain. Knk1 tip levels are enhanced in a sla2 or cdc42, independently of Sla2 role in endocytosis. Finally, Knk1 oscillates between the two cell tips in an anti-correlated periodic manner possibly uncoupled from Cdc42 oscillations suggesting the existence of at least two separated oscillatory systems contributing to fission yeast morphogenesis
Style APA, Harvard, Vancouver, ISO itp.
9

Moldón, Vara Alberto. "Promoter-driven splicing regulation in fission yeast". Doctoral thesis, Universitat Pompeu Fabra, 2008. http://hdl.handle.net/10803/7125.

Pełny tekst źródła
Streszczenie:
The meiotic cell cycle is modified from the mitotic cell cycle by having a premeiotic S phase which leads to high levels of recombination, two rounds of nuclear division with no intervening DNA synthesis, and a reductional pattern of chromosome segregation. Rem1 is a cyclin that is expressed only during meiosis in the fission yeast Schizosaccharomyces pombe. Cells in which rem1 has been deleted show a decreased intragenic meiotic recombination and a delay at the onset of meiosis I. When ectopically expressed in mitotically growing cells, Rem1 induces a G1 arrest followed by severe mitotic catastrophes. Here we show that rem1 expression is regulated at the level of both transcription and splicing, encoding for two proteins with different function depending on the intron retention. We have determined that the regulation of rem1 splicing is not dependent on any transcribed region of the gene. Furthermore, when the rem1 promoter is fused to other intron-containing genes, the chimeras show a meiotic-specific regulation of splicing, exactly as endogenous rem1. This regulation is dependent on two transcription factors of the forkhead family, Mei4 and Fkh2. While Mei4 induces both transcription and splicing of rem1, Fkh2 is responsible for the intron retention of the transcript during vegetative growth and pre-meiotic S phase.
El ciclo meiótico se diferencia del ciclo mitótico por tener una fase S pre-meiótica caracterizada por altos niveles de recombinación, dos rondas de división nuclear sin síntesis de DNA entre las dos y una segregación cromosómica reduccional. Rem1 es una ciclina que sólo se expresa en meiosis en la levadura de fisión Schizosaccharomyces pombe. Celulas con rem1 deleccionado presentan una tasa de recombinación intragénica disminuida y un retraso en el inicio de meiosis I. Cuando se expresa ectópicamente en células creciendo vegetativamente, Rem1 induce un arresto en G1 seguido de catástrofe mitótica. Este trabajo describe que la expresión de rem1 está regulada a nivel de la trascripción y el procesamiento, codificando para dos proteínas con funciones diferentes dependiendo de la retención intrónica.. Hemos determinado que la regulación del splicing de rem1 no depende de ninguna región transcrita del gen. Además, cuando el promotor se fusiona a otros genes que contienen intrones, las quimeras presentan una regulación específica de meiosis como el rem1 endógeno. Esta regulación depende de dos factores de transcripción de la familia Forkhead, Mei4 y Fkh2. Mientras Mei4 induce la transcripción y el splicing de rem1, Fkh2 es responsable de la retención intrónica del tránscrito durante crecimiento vegetativo y fase S pre-meiótica.
Style APA, Harvard, Vancouver, ISO itp.
10

SAKALAR, Cagri. "Roles of H2A.z in Fission Yeast Chromatin". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2007. http://nbn-resolving.de/urn:nbn:de:swb:14-1195137345841-32085.

Pełny tekst źródła
Streszczenie:
Covalent histone modifications such as methylation, acetylation as well as differential incorporation of histone variants are shown to coincide with different chromatin compartments and mark active or repressed genes. Msc1 is one of the seven JmjC Domain Proteins (JDPs) in Fission Yeast. JDPs are known to function in chromatin and some act as histone demethylases. We found that Msc1 is a member of Swr1 Complex which is known to exchange histone H2A variant H2A.z in nucleosomes. We purified H2A.z as a member of Swr1 Complex and its interaction with Swr1 Complex depends on Swr1. We’ve shown that histone H4 Lysine 20 trimethylation (H4 K20 Me3) is lost in h2A.z and msc1 deletion strains and these strains are sensitive to UV. Deletion strain of h2A.z is sensitive to Camptothecin. Histones H3 and H4 are obtained in Msc1 and H2A.z purifications and we’ve shown that histone H4 from these purifications has low level of Lysine 16 acetylation (H4 K16 Ac). Deletion strains of h2A.z, swr1 and msc1 are shown to be sensitive to TSA, a histone deacetylase (HDAC) inhibitor suggesting that H2A.z cooperates with HDACs. TSA treatment of wild type cells cause an increase in H4 K16 Ac and a decrease in H4 K20 Me3. Gene expression profiles of h2A.z, swr1 and msc1 are significantly similar and upregulated genes in deletion strains localize at chromosome ends (a region of 160 kb for each end). The number of stress or meiotic inducible genes is increased in deletion strains suggesting that H2A.z has a role in regulation of inducible genes. We suggest that H2A.z, in cooperation with HDACs, functions in regulation of chromatin accessibility of inducible promoters.
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Fission yeast"

1

1935-, Nasim A., Young Paul i Johnson Byron F, red. Molecular biology of the fission yeast. San Diego: Academic Press, 1989.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Pan, Kally Zhang. Cell Size Control in Fission Yeast. [New York, N.Y.?]: [publisher not identified], 2013.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Giga-Hama, Yuko, i Hiromichi Kumagai, red. Foreign Gene Expression in Fission Yeast: Schizosaccharomyces pombe. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-662-03472-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Caroline, Alfa, i Cold Spring Harbor Laboratory, red. Experiments with fission yeast: A laboratory course manual. Plainview, N.Y: Cold Spring Harbor Laboratory Press, 1993.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

1959-, Giga-Hama Yuko, i Kumagai Hiromichi 1954-, red. Foreign gene expression in fission yeast: Schizosaccharomyces pombe. Berlin: Springer, 1997.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Powner, Dale John. Activation of the kexin Krp1 from the fission yeast schizosaccharomyces pombe. [s.l.]: typescript, 1998.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Brown, Alison. Investigation into markers for endocytosis in the fission yeast schizosaccharomyces pombe. Birmingham: University of Birmingham, 1992.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Bassil, Nicholas. Molecular characterisation of the endocytic pathway using the fission yeast Schizosaccaromyces pombe. Birmingham: University of Birmingham, 1991.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Hughes, Marcus Daniel. The M-factor pheromone from the fission yeast Schizosaccharomyces pombe: Investigation into its proteolysis. [s.l.]: typescript, 1999.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Brind, Robert Ian. The characterisation of Plc1: A phospholipase C enzyme identified in the fission yeast Schizosaccharomyces pombe. [s.l.]: typescript, 2000.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Fission yeast"

1

Sveiczer, Ákos, i Anna Horváth. "Cell Cycle, Fission Yeast". W Encyclopedia of Systems Biology, 349–53. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_17.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Volpe, Thomas A., i Jessica DeMaio. "Chromatin Immunoprecipitation in Fission Yeast". W Methods in Molecular Biology, 15–28. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-046-1_2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Egel, Richard. "Fission Yeast in General Genetics". W The Molecular Biology of Schizosaccharomyces pombe, 1–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-10360-9_1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Gachet, Yannick, Daniel P. Mulvihill i Jeremy S. Hyams. "The Fission Yeast Actomyosin Cytoskeleton". W The Molecular Biology of Schizosaccharomyces pombe, 225–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-10360-9_14.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Sipiczki, Matthias. "Fission Yeast Phylogenesis and Evolution". W The Molecular Biology of Schizosaccharomyces pombe, 431–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-10360-9_29.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Escorcia, Wilber, i Susan L. Forsburg. "Tetrad Dissection in Fission Yeast". W Methods in Molecular Biology, 179–87. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7546-4_16.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Millar, Jonathan B. A., Guy Lenaers, Clare McGowan i Paul Russell. "Activation of MPF in Fission Yeast". W Ciba Foundation Symposium 170 - Regulation of the Eukaryotic Cell Cycle, 50–71. Chichester, UK: John Wiley & Sons, Ltd., 2007. http://dx.doi.org/10.1002/9780470514320.ch5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Tormos-Pérez, Marta, Livia Pérez-Hidalgo i Sergio Moreno. "Fission Yeast Cell Cycle Synchronization Methods". W Methods in Molecular Biology, 293–308. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3145-3_20.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Moreno, S., i P. Nurse. "Cell cycle regulation in fission yeast". W Molecular Biology and its Application to Medical Mycology, 3–5. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84625-0_1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Escorcia, Wilber, i Susan L. Forsburg. "Random Spore Analysis in Fission Yeast". W Methods in Molecular Biology, 189–95. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7546-4_17.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Fission yeast"

1

Kim, Hyunju, Paul Davies i Sara Walker. "Informational Architecture of the Fission Yeast Cell Cycle Regulatory Network". W Artificial Life 14: International Conference on the Synthesis and Simulation of Living Systems. The MIT Press, 2014. http://dx.doi.org/10.7551/978-0-262-32621-6-ch092.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Nungnit, Wattanavichean, Nishida Ikuhisa, Ando Masahiro, Kawamukai Makoto, Yamamoto Tatsuyuki i Hamaguchi Hiro-O. "Mitochondria specific Raman microspectroscopy of fission yeast cells with simultaneous Raman/GFP observation". W Asian Spectroscopy Conference 2020. Institute of Advanced Studies, Nanyang Technological University, 2020. http://dx.doi.org/10.32655/asc_8-10_dec2020.72.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Amato, F., M. Bansal, C. Cosentino, W. Curatola i D. di Bernardo. "Modeling the cell cycle of fission yeast by means of piecewise linear systems". W 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control. IEEE, 2006. http://dx.doi.org/10.1109/cacsd-cca-isic.2006.4777167.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Amato, F., M. Bansal, C. Cosentino, W. Curatola i D. Bernardo. "Modeling the Cell Cycle of Fission Yeast by Means of Piecewise Linear Systems". W 2006 IEEE International Conference on Control Applications. IEEE, 2006. http://dx.doi.org/10.1109/cca.2006.286157.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

O'Brien, Jennifer, Sanaul Hoque, Daniel Mulvihill i Konstantinos Sirlantzis. "Automated Cell Segmentation of Fission Yeast Phase Images - Segmenting Cells from Light Microscopy Images". W 4th International Conference on Bioimaging. SCITEPRESS - Science and Technology Publications, 2017. http://dx.doi.org/10.5220/0006149100920099.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Chen, Eesin, Kwishan Seah i Thuytrang Nguyen. "Abstract A05: Derivation of chemotherapeutic combination against gastric cancer cells via synthetic lethal targeting of conserved drug-resistance network in fission yeast surrogate". W Abstracts: AACR Precision Medicine Series: Opportunities and Challenges of Exploiting Synthetic Lethality in Cancer; January 4-7, 2017; San Diego, CA. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-8514.synthleth-a05.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Bidone, Tamara Carla, Haosu Tang i Dimitrios Vavylonis. "Insights Into the Mechanics of Cytokinetic Ring Assembly Using 3D Modeling". W ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-39006.

Pełny tekst źródła
Streszczenie:
During fission yeast cytokinesis, actin filaments nucleated by cortical formin Cdc12 are captured by myosin motors bound to a band of cortical nodes. The myosin motors exert forces that pull nodes together into a contractile ring. Cross-linking interactions help align actin filaments and nodes into a single bundle. Mutations in the myosin motor domain and changes in the concentration of cross-linkers alpha-actinin and fimbrin alter the morphology of the condensing network, leading to clumps, rings or extended meshworks. How the contractile tension developing during ring formation depends on the interplay between network morphology, myosin motor activity, cross-linking and actin filament turnover remains to be elucidated. We addressed this question using a 3D computational model in which semiflexible actin filaments (represented as beads connected by springs) grow from formins, can be captured by myosin in neighboring nodes, and get cross-linked with one another through an attractive interaction. We identify regimes of tension generation between connected nodes under a wide set of conditions regarding myosin dynamics and strength of cross-linking between actin filaments. We find conditions that maximize circumferential tension, correlate them with network morphology and propose experiments to test these predictions. This work addresses “Morphogenesis of soft and living matter” using computational modeling to simulate cytokinetic ring assembly from the key molecular mechanisms of viscoelastic cross-linked actin networks that include active molecular motors.
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Fission yeast"

1

Chapman, Carolyn R. Analysis of the Fission Yeast Rad3+ Gene Product. Fort Belvoir, VA: Defense Technical Information Center, styczeń 1999. http://dx.doi.org/10.21236/ada368445.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Matsumoto, Tomohiro. Fission Yeast Model Study for Dissection of TSC Pathway. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 2010. http://dx.doi.org/10.21236/ada560751.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Kadura, Sheila, i Shelley Sazar. Identification and Characterization of Components of the Mitotic Spindle Checkpoint Pathway Using Fission Yeast. Fort Belvoir, VA: Defense Technical Information Center, lipiec 2002. http://dx.doi.org/10.21236/ada408789.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Kadura, Sheila, i Shelly Sazer. Identification and Characterization of Components of the Mitotic Spindle Checkpoint Pathway in Fission Yeast. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2003. http://dx.doi.org/10.21236/ada421768.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii