Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Finite temperature QCD.

Artykuły w czasopismach na temat „Finite temperature QCD”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Finite temperature QCD”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Christ, Norman H. "Finite temperature QCD". Nuclear Physics A 544, nr 1-2 (lipiec 1992): 81–93. http://dx.doi.org/10.1016/0375-9474(92)90566-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

PANDEY, H. C., H. C. CHANDOLA i H. DEHNEN. "COLOR CONFINEMENT AND FINITE TEMPERATURE QCD PHASE TRANSITION". International Journal of Modern Physics A 19, nr 02 (20.01.2004): 271–85. http://dx.doi.org/10.1142/s0217751x04017471.

Pełny tekst źródła
Streszczenie:
We study an effective theory of QCD in which the fundamental variables are dual magnetic potentials coupled to the monopole field. Dual dynamics are then used to explain the properties of QCD vacuum at zero temperature as well as at finite temperatures. At zero temperature, the color confinement is realized through the dynamical breaking of magnetic symmetry, which leads to the magnetic condensation of QCD vacuum. The flux tube structure of SU(2) QCD vacuum is investigated by solving the field equations in the low energy regimes of the theory, which guarantees dual superconducting nature of the QCD vacuum. The QCD phase transition at finite temperature is studied by the functional diagrammatic evaluation of the effective potential on the one-loop level. We then obtained analytical expressions for the vacuum expectation value of the condensed monopoles as well as the masses of glueballs from the temperature dependent effective potential. These nonperturbative parameters are also evaluated numerically and used to determine the critical temperature of the QCD phase transition. Finally, it is shown that near the critical temperature (Tc≃0.195 GeV ), continuous reduction of vacuum expectation value (VEV) of the condensed monopoles caused the disappearance of vector and scalar glueball masses, which brings a second order phase transition in pure SU(2) gauge QCD.
Style APA, Harvard, Vancouver, ISO itp.
3

Lawlor, Dale, Simon Hands, Seyong Kim i Jon-Ivar Skullerud. "Thermal Transitions in Dense Two-Colour QCD". EPJ Web of Conferences 274 (2022): 07012. http://dx.doi.org/10.1051/epjconf/202227407012.

Pełny tekst źródła
Streszczenie:
The infamous sign problem makes it impossible to probe dense (baryon density μB > 0) QCD at temperatures near or below the deconfinement threshold. As a workaround, one can explore QCD-like theories such as twocolour QCD (QC2D) which don’t suffer from this sign problem but are qualitively similar to real QCD. Previous studies on smaller lattice volumes have investigated deconfinement and colour superfluid to normal matter transitions. In this study we look at a larger lattice volume Ns = 24 in an attempt to disentangle finite volume and finite temperature effects. We also fit to a larger number of diquark sources to better allow for extrapolation to zero diquark source.
Style APA, Harvard, Vancouver, ISO itp.
4

Laermann, E., i O. Philipsen. "LATTICE QCD AT FINITE TEMPERATURE". Annual Review of Nuclear and Particle Science 53, nr 1 (grudzień 2003): 163–98. http://dx.doi.org/10.1146/annurev.nucl.53.041002.110609.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Petersson, B., i E. Laermann. "Finite Temperature QCD on Quadrics". Progress of Theoretical Physics Supplement 122 (1996): 85–96. http://dx.doi.org/10.1143/ptps.122.85.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Ejiri, Shinji. "Lattice QCD at finite temperature". Nuclear Physics B - Proceedings Supplements 94, nr 1-3 (marzec 2001): 19–26. http://dx.doi.org/10.1016/s0920-5632(01)00922-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Petreczky, P. "Lattice QCD at finite temperature". Nuclear Physics A 785, nr 1-2 (marzec 2007): 10–17. http://dx.doi.org/10.1016/j.nuclphysa.2006.11.129.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Reinhardt, Hugo, Davide Campagnari i Markus Quandt. "Hamiltonian Approach to QCD at Finite Temperature". Universe 5, nr 2 (22.01.2019): 40. http://dx.doi.org/10.3390/universe5020040.

Pełny tekst źródła
Streszczenie:
A novel approach to the Hamiltonian formulation of quantum field theory at finite temperature is presented. The temperature is introduced by compactification of a spatial dimension. The whole finite-temperature theory is encoded in the ground state on the spatial manifold S 1 ( L ) × R 2 where L is the length of the compactified dimension which defines the inverse temperature. The approach is then applied to the Hamiltonian formulation of QCD in Coulomb gauge to study the chiral phase transition at finite temperatures.
Style APA, Harvard, Vancouver, ISO itp.
9

Ayala, Alejandro, C. A. Dominguez i M. Loewe. "Finite Temperature QCD Sum Rules: A Review". Advances in High Energy Physics 2017 (2017): 1–24. http://dx.doi.org/10.1155/2017/9291623.

Pełny tekst źródła
Streszczenie:
The method of QCD sum rules at finite temperature is reviewed, with emphasis on recent results. These include predictions for the survival of charmonium and bottonium states, at and beyond the critical temperature for deconfinement, as later confirmed by lattice QCD simulations. Also included are determinations in the light-quark vector and axial-vector channels, allowing analysing the Weinberg sum rules and predicting the dimuon spectrum in heavy-ion collisions in the region of the rho-meson. Also, in this sector, the determination of the temperature behaviour of the up-down quark mass, together with the pion decay constant, will be described. Finally, an extension of the QCD sum rule method to incorporate finite baryon chemical potential is reviewed.
Style APA, Harvard, Vancouver, ISO itp.
10

XIANGJUN, CHEN, i YASUSHI FUJIMOTO. "FINITE TEMPERATURE QCD AT THREE-LOOP". Modern Physics Letters A 11, nr 13 (30.04.1996): 1033–36. http://dx.doi.org/10.1142/s0217732396001065.

Pełny tekst źródła
Streszczenie:
QCD three-loop vacuum graphs are calculated in Feynman gauge. All the temperature-dependent divergences are extracted by using dimensional regularization. Ultraviolet divergences are shown to cancel with each other and the ir divergences remain uncanceled.
Style APA, Harvard, Vancouver, ISO itp.
11

Petreczky, Péter. "Progress in finite temperature lattice QCD". Journal of Physics G: Nuclear and Particle Physics 35, nr 4 (18.03.2008): 044033. http://dx.doi.org/10.1088/0954-3899/35/4/044033.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Borsányi, Szabolcs. "Frontiers of finite temperature lattice QCD". EPJ Web of Conferences 137 (2017): 01006. http://dx.doi.org/10.1051/epjconf/201713701006.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Sakai, Sunao. "Finite Temperature QCD with Wilson Fermions". Progress of Theoretical Physics Supplement 122 (1996): 109–14. http://dx.doi.org/10.1143/ptps.122.109.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Laermann, E. "Finite-temperature QCD on the lattice". Physics of Particles and Nuclei 30, nr 3 (maj 1999): 304. http://dx.doi.org/10.1134/1.953108.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Alexandrou, Constantia, Artan Boriçi, Alessandra Feo, Philippe de Forcrand, Andrea Galli, Fred Jegerlehner i Tetsuya Takaishi. "One-flavour QCD at finite temperature". Nuclear Physics B - Proceedings Supplements 63, nr 1-3 (kwiecień 1998): 406–8. http://dx.doi.org/10.1016/s0920-5632(97)00784-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Fingberg, J. "Non-relativistic QCD at finite temperature". Nuclear Physics B - Proceedings Supplements 63, nr 1-3 (kwiecień 1998): 415–17. http://dx.doi.org/10.1016/s0920-5632(97)00787-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

de Forcrand, Ph, M. García Pérez, T. Hashimoto, S. Hioki, H. Matsufuru, O. Miyamura, A. Nakamura, I. O. Stamatescu, T. Takaishi i T. Umeda. "Finite temperature QCD on anisotropic lattices". Nuclear Physics B - Proceedings Supplements 73, nr 1-3 (marzec 1999): 420–25. http://dx.doi.org/10.1016/s0920-5632(99)85092-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Ukawa, Akira. "Progress in finite-temperature lattice QCD". Nuclear Physics A 638, nr 1-2 (sierpień 1998): 339c—350c. http://dx.doi.org/10.1016/s0375-9474(98)00375-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Umeda, T., R. Katayama, H. Matsufuru i O. Miyamura. "Charmonium in finite temperature lattice QCD". Nuclear Physics B - Proceedings Supplements 94, nr 1-3 (marzec 2001): 435–38. http://dx.doi.org/10.1016/s0920-5632(01)00997-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Gottlieb, Steven. "Finite temperature QCD with dynamical fermions". Nuclear Physics B - Proceedings Supplements 20 (maj 1991): 247–57. http://dx.doi.org/10.1016/0920-5632(91)90919-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Dominguez, C. A., i M. Loewe. "QCD sum rules at finite temperature". Zeitschrift für Physik C Particles and Fields 51, nr 1 (marzec 1991): 69–72. http://dx.doi.org/10.1007/bf01579560.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Ukawa, Akira. "Finite-temperature QCD on the lattice". Nuclear Physics B - Proceedings Supplements 53, nr 1-3 (luty 1997): 106–19. http://dx.doi.org/10.1016/s0920-5632(96)00604-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Schramm, S., i M. C. Chu. "Quark correlations in finite-temperature QCD". Physical Review D 48, nr 5 (1.09.1993): 2279–83. http://dx.doi.org/10.1103/physrevd.48.2279.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Petersson, Bengt. "Finite temperature QCD: Lattice '92 review". Nuclear Physics B - Proceedings Supplements 30 (marzec 1993): 66–80. http://dx.doi.org/10.1016/0920-5632(93)90178-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Ogilvie, Michael. "Interfacial phenomena in finite temperature QCD". Nuclear Physics B - Proceedings Supplements 34 (kwiecień 1994): 275–78. http://dx.doi.org/10.1016/0920-5632(94)90365-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Kanaya, Kazuyuki. "Finite temperature QCD on the lattice". Nuclear Physics B - Proceedings Supplements 47, nr 1-3 (marzec 1996): 144–59. http://dx.doi.org/10.1016/0920-5632(96)00040-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Kalashnikov, O. K. "QCD infrared pole at finite temperature". Physics Letters B 279, nr 3-4 (kwiecień 1992): 367–72. http://dx.doi.org/10.1016/0370-2693(92)90406-t.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

PETRECZKY, PÉTER. "QCD AT NONZERO TEMPERATURE: BULK PROPERTIES AND HEAVY QUARKS". Modern Physics Letters A 25, nr 37 (7.12.2010): 3081–92. http://dx.doi.org/10.1142/s0217732310034523.

Pełny tekst źródła
Streszczenie:
We review recent progress in lattice QCD at nonzero temperature with emphasis on the calculations of equation of state and the properties of heavy quark–anti-quark pairs at high temperatures. We also briefly discuss the deconfinement and chiral symmetry restoring aspects of the QCD transition at finite temperature.
Style APA, Harvard, Vancouver, ISO itp.
29

Issifu, Adamu, i Francisco A. Brito. "The (De)confinement Transition in Tachyonic Matter at Finite Temperature". Advances in High Energy Physics 2019 (27.02.2019): 1–9. http://dx.doi.org/10.1155/2019/9450367.

Pełny tekst źródła
Streszczenie:
We present a QCD motivated model that mimics QCD theory. We examine the characteristics of the gauge field coupled with the color dielectric function (G) in the presence of temperature (T). The aim is to achieve confinement at low temperatures T<Tc, (Tc is the critical temperature), similar to what occurs among quarks and gluons in hadrons at low energies. Also, we investigate scalar glueballs and QCD string tension and effect of temperature on them. To achieve this, we use the phenomenon of color dielectric function in gauge fields in a slowly varying tachyon medium. This method is suitable for analytically computing the resulting potential, glueball masses, and the string tension associated with the confinement at a finite temperature. We demonstrate that the color dielectric function changes Maxwell’s equation as a function of the tachyon fields and induces the electric field in a way that brings about confinement during the tachyon condensation below the critical temperature.
Style APA, Harvard, Vancouver, ISO itp.
30

GAMBOA, J., J. LÓPEZ-SARRIÓN, M. LOEWE i F. MÉNDEZ. "CENTRAL CHARGES AND EFFECTIVE ACTION AT FINITE TEMPERATURE AND DENSITY". Modern Physics Letters A 19, nr 03 (30.01.2004): 223–38. http://dx.doi.org/10.1142/s0217732304012952.

Pełny tekst źródła
Streszczenie:
The current algebra for gauge theories like QCD at finite temperature and density is studied. We start considering, the massless Thirring model at finite temperature and density, finding an explicit expression for the current algebra. The central charge only depends on the coupling constant and there are not new effects due to temperature and density. From this calculation, we argue how to compute the central charge for QCD4 and we argue why the central charge in four dimensions could be modified by finite temperature and density.
Style APA, Harvard, Vancouver, ISO itp.
31

WANG, MING-MIN, YU JIANG, BIN WANG, WEI-MIN SUN i HONG-SHI ZONG. "CALCULATION OF BULK VISCOSITY OF QCD AT ZERO TEMPERATURE AND FINITE CHEMICAL POTENTIAL". Modern Physics Letters A 26, nr 24 (10.08.2011): 1797–806. http://dx.doi.org/10.1142/s0217732311036164.

Pełny tekst źródła
Streszczenie:
In this paper, based on Kubo's formula and the QCD low energy theorem, we propose a direct formula for calculating the bulk viscosity of QCD at finite chemical potential μ and zero temperature. According to this formula, the bulk viscosity at finite μ is totally determined by the dressed quark propagator at finite μ. We then use a dynamical, confining Dyson–Schwinger equation model of QCD to calculate the bulk viscosity at finite μ. It is found that no sharp peak behavior of the bulk viscosity at finite μ is observed, which is quite different from that of the bulk viscosity at finite temperature.
Style APA, Harvard, Vancouver, ISO itp.
32

Billó, M., M. Caselle, A. d'Adda i S. Panzeri. "Finite Temperature Lattice QCD in the Large N Limit". International Journal of Modern Physics A 12, nr 10 (20.04.1997): 1783–845. http://dx.doi.org/10.1142/s0217751x97001158.

Pełny tekst źródła
Streszczenie:
Our aim is to give a self-contained review of recent advances in the analytic description of the deconfinement transition and determination of the deconfinement temperature in lattice QCD at large N. We also include some new results, as for instance in the comparison of the analytic results with Monte Carlo simulations. We first review the general set-up of finite temperature lattice gauge theories, using asymmetric lattices, and develop a consistent perturbative expansion in the coupling βs of the spacelike plaquettes. We study in detail the effective models for the Polyakov loop obtained, in the zeroth order approximation in βs, both from the Wilson action (symmetric lattice) and from the heat kernel action (completely asymmetric lattice). The distinctive feature of the heat kernel model is its relation with two-dimensional QCD on a cylinder; the Wilson model, on the other hand, can be exactly reduced to a twisted one-plaquette model via a procedure of the Eguchi–Kawai type. In the weak coupling regime both models can be related to exactly solvable Kazakov–Migdal matrix models. The instability of the weak coupling solution is due in both cases to a condensation of instantons; in the heat kernel case, this is directly related to the Douglas–Kazakov transition of QCD2. A detailed analysis of these results provides rather accurate predictions of the deconfinement temperature. In spite of the zeroth order approximation they are in good agreement with the Monte Carlo simulations in 2 + 1 dimensions, while in 3 + 1 dimensions they only agree with the Monte Carlo results away from the continuum limit.
Style APA, Harvard, Vancouver, ISO itp.
33

Nieto, Agustin. "Perturbative QCD at High Temperature". International Journal of Modern Physics A 12, nr 08 (30.03.1997): 1431–64. http://dx.doi.org/10.1142/s0217751x97001043.

Pełny tekst źródła
Streszczenie:
Recent developments of perturbation theory at finite temperature based on effective field theory methods are reviewed. These methods allow the contributions from the different scales to be separated and the perturbative series to be reorganized. The construction of the effective field theory is shown in detail for ϕ4 theory and QCD. It is applied to the evaluation of the free energy of QCD at order g5 and the calculation of the g6 term is outlined. Implications for the application of perturbative QCD to the quark–gluon plasma are also discussed.
Style APA, Harvard, Vancouver, ISO itp.
34

Kashiwa, Kouji. "Imaginary Chemical Potential, NJL-Type Model and Confinement–Deconfinement Transition". Symmetry 11, nr 4 (18.04.2019): 562. http://dx.doi.org/10.3390/sym11040562.

Pełny tekst źródła
Streszczenie:
In this review, we present of an overview of several interesting properties of QCD at finite imaginary chemical potential and those applications to exploring the QCD phase diagram. The most important properties of QCD at a finite imaginary chemical potential are the Roberge–Weiss periodicity and the transition. We summarize how these properties play a crucial role in understanding QCD properties at finite temperature and density. This review covers several topics in the investigation of the QCD phase diagram based on the imaginary chemical potential.
Style APA, Harvard, Vancouver, ISO itp.
35

LOMBARDO, M. P. "Lattice QCD at Finite Temperature and Density". Modern Physics Letters A 22, nr 07n10 (28.03.2007): 457–71. http://dx.doi.org/10.1142/s0217732307023055.

Pełny tekst źródła
Streszczenie:
A general introduction into the subject aimed at a general theoretical physics audience. We introduce the sign problem posed by finite density lattice QCD, and we discuss the main methods proposed to circumvent it, with emphasis on the imaginary chemical potential approach. The interrelation between Taylor expansion and analytic continuation from imaginary chemical potential is discussed in detail. The main applications to the calculation of the critical line, and to the thermodynamics of the hot and normal phase are reviewed.
Style APA, Harvard, Vancouver, ISO itp.
36

Niégawa, Akira. "Perturbative QCD at Finite Temperature and Density". Progress of Theoretical Physics Supplement 129 (1997): 105–18. http://dx.doi.org/10.1143/ptps.129.105.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Ejiri, Shinji. "Lattice QCD at Finite Temperature and Density". Progress of Theoretical Physics Supplement 186 (1.10.2010): 510–15. http://dx.doi.org/10.1143/ptps.186.510.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Philipsen, O. "Lattice QCD at finite temperature and density". European Physical Journal Special Topics 152, nr 1 (grudzień 2007): 29–60. http://dx.doi.org/10.1140/epjst/e2007-00376-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Noronha-Hostler, J., R. Bellwied, J. Günther, P. Parotto, A. Pasztor, I. Portillo Vazquez i C. Ratti. "Strangeness at finite temperature from Lattice QCD". Journal of Physics: Conference Series 779 (styczeń 2017): 012050. http://dx.doi.org/10.1088/1742-6596/779/1/012050.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Kim, Y. "AdS/QCD at finite density and temperature". Physics of Atomic Nuclei 75, nr 7 (lipiec 2012): 870–72. http://dx.doi.org/10.1134/s1063778812060208.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Chen, Xianjun, i Yasushi Fujimoto. "ERRATA: FINITE TEMPERATURE QCD AT THREE-LOOP". Modern Physics Letters A 11, nr 18 (14.06.1996): 1529. http://dx.doi.org/10.1142/s0217732396003155.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Azcoiti, Vicente, i Angelo Galante. "Baryonic thermal fluctuations in finite temperature QCD". Physics Letters B 444, nr 3-4 (grudzień 1998): 421–26. http://dx.doi.org/10.1016/s0370-2693(98)01432-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Miranda, Alex S., C. A. Ballon Bayona, Henrique Boschi-Filho i Nelson R. F. Braga. "Glueballs at finite temperature from AdS/QCD". Nuclear Physics B - Proceedings Supplements 199, nr 1 (luty 2010): 107–12. http://dx.doi.org/10.1016/j.nuclphysbps.2010.02.013.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Chu, M. C., i S. Schramm. "Instanton content of finite temperature QCD matter". Physical Review D 51, nr 8 (15.04.1995): 4580–86. http://dx.doi.org/10.1103/physrevd.51.4580.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Markum, H., R. Pullirsch, K. Rabitsch i T. Wettig. "Quantum chaos in QCD at finite temperature". Nuclear Physics B - Proceedings Supplements 63, nr 1-3 (kwiecień 1998): 832–34. http://dx.doi.org/10.1016/s0920-5632(97)00914-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Karsch, F. "Lattice QCD at Finite Temperature and Density". Nuclear Physics B - Proceedings Supplements 83-84, nr 1-3 (marzec 2000): 14–23. http://dx.doi.org/10.1016/s0920-5632(00)00195-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Karsch, Frithjof. "Lattice QCD at finite temperature and density". Nuclear Physics B - Proceedings Supplements 83-84 (kwiecień 2000): 14–23. http://dx.doi.org/10.1016/s0920-5632(00)91591-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Mishra, A., H. Mishra, S. P. Misra i S. N. Nayak. "QCD at finite temperature—a variational approach". Zeitschrift für Physik C Particles and Fields 57, nr 2 (czerwiec 1993): 233–40. http://dx.doi.org/10.1007/bf01565054.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Dominguez, C. A. "Colour deconfinement in QCD at finite temperature". Nuclear Physics B - Proceedings Supplements 15 (czerwiec 1990): 225–27. http://dx.doi.org/10.1016/0920-5632(90)90020-u.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Gocksch, Andreas. "Quark screening lengths in finite temperature QCD". Nuclear Physics B - Proceedings Supplements 20 (maj 1991): 284–87. http://dx.doi.org/10.1016/0920-5632(91)90926-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii