Gotowa bibliografia na temat „Finite temperature QCD”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Finite temperature QCD”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Finite temperature QCD"
Christ, Norman H. "Finite temperature QCD". Nuclear Physics A 544, nr 1-2 (lipiec 1992): 81–93. http://dx.doi.org/10.1016/0375-9474(92)90566-3.
Pełny tekst źródłaPANDEY, H. C., H. C. CHANDOLA i H. DEHNEN. "COLOR CONFINEMENT AND FINITE TEMPERATURE QCD PHASE TRANSITION". International Journal of Modern Physics A 19, nr 02 (20.01.2004): 271–85. http://dx.doi.org/10.1142/s0217751x04017471.
Pełny tekst źródłaLawlor, Dale, Simon Hands, Seyong Kim i Jon-Ivar Skullerud. "Thermal Transitions in Dense Two-Colour QCD". EPJ Web of Conferences 274 (2022): 07012. http://dx.doi.org/10.1051/epjconf/202227407012.
Pełny tekst źródłaLaermann, E., i O. Philipsen. "LATTICE QCD AT FINITE TEMPERATURE". Annual Review of Nuclear and Particle Science 53, nr 1 (grudzień 2003): 163–98. http://dx.doi.org/10.1146/annurev.nucl.53.041002.110609.
Pełny tekst źródłaPetersson, B., i E. Laermann. "Finite Temperature QCD on Quadrics". Progress of Theoretical Physics Supplement 122 (1996): 85–96. http://dx.doi.org/10.1143/ptps.122.85.
Pełny tekst źródłaEjiri, Shinji. "Lattice QCD at finite temperature". Nuclear Physics B - Proceedings Supplements 94, nr 1-3 (marzec 2001): 19–26. http://dx.doi.org/10.1016/s0920-5632(01)00922-7.
Pełny tekst źródłaPetreczky, P. "Lattice QCD at finite temperature". Nuclear Physics A 785, nr 1-2 (marzec 2007): 10–17. http://dx.doi.org/10.1016/j.nuclphysa.2006.11.129.
Pełny tekst źródłaReinhardt, Hugo, Davide Campagnari i Markus Quandt. "Hamiltonian Approach to QCD at Finite Temperature". Universe 5, nr 2 (22.01.2019): 40. http://dx.doi.org/10.3390/universe5020040.
Pełny tekst źródłaAyala, Alejandro, C. A. Dominguez i M. Loewe. "Finite Temperature QCD Sum Rules: A Review". Advances in High Energy Physics 2017 (2017): 1–24. http://dx.doi.org/10.1155/2017/9291623.
Pełny tekst źródłaXIANGJUN, CHEN, i YASUSHI FUJIMOTO. "FINITE TEMPERATURE QCD AT THREE-LOOP". Modern Physics Letters A 11, nr 13 (30.04.1996): 1033–36. http://dx.doi.org/10.1142/s0217732396001065.
Pełny tekst źródłaRozprawy doktorskie na temat "Finite temperature QCD"
Cossu, Guido. "Deconfinement transition in QCD at finite temperature". Doctoral thesis, Scuola Normale Superiore, 2009. http://hdl.handle.net/11384/85831.
Pełny tekst źródłaZhang, Yingwen. "Applications of QCD sum rules at finite temperature". Doctoral thesis, University of Cape Town, 2013. http://hdl.handle.net/11427/30179.
Pełny tekst źródłaHatta, Yoshitaka. "The QCD phase transition at finite temperature and density". 京都大学 (Kyoto University), 2004. http://hdl.handle.net/2433/147809.
Pełny tekst źródłaAouane, Rafik. "Gluon and ghost propagator studies in lattice QCD at finite temperature". Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2013. http://dx.doi.org/10.18452/16735.
Pełny tekst źródłaGluon and ghost propagators in quantum chromodynamics (QCD) computed in the infrared momentum region play an important role to understand quark and gluon confinement. They are the subject of intensive research thanks to non-perturbative methods based on Dyson-Schwinger (DS) and functional renormalization group (FRG) equations. Moreover, their temperature behavior might also help to explore the chiral and deconfinement phase transition or crossover within QCD at non-zero temperature. Our prime tool is the lattice discretized QCD (LQCD) providing a unique ab-initio non-perturbative approach to deal with the computation of various observables of the hadronic world. We investigate the temperature dependence of Landau gauge gluon and ghost propagators in pure gluodynamics and in full QCD. Regarding the gluon propagator, we compute its longitudinal DL as well its transversal DT components. The aim is to provide a data set in terms of fitting formulae which can be used as input for DS (or FRG) equations. We deal with full (Nf=2) LQCD with the twisted mass fermion discretization. We employ gauge field configurations provided by the tmfT collaboration for temperatures in the crossover region and for three fixed pion mass values in the range [300,500] MeV. Finally, within SU(3) pure gauge theory (at T=0) we compute the Landau gauge gluon propagator according to different gauge fixing criteria. Our goal is to understand the influence of gauge copies with minimal (non-trivial) eigenvalues of the Faddeev-Popov operator.
Fetea, Mirela Simona. "Pions and vector mesons at finite temperature from QCD sum rules". Doctoral thesis, University of Cape Town, 1998. http://hdl.handle.net/11427/9694.
Pełny tekst źródłaThe temperature corrections to the current algebra Gell-Mann, Oakes and Renner(GMOR) relation in SU(2) X SU(2), the temperature behaviour of the pion mass and the q2 and T dependence of the ρππ vertex function in the space-like region are investigated.
Vuorinen, Aleksi. "The pressure of QCD at finite temperature and quark number density". Helsinki : University of Helsinki, 2003. http://ethesis.helsinki.fi/julkaisut/mat/fysik/vk/vuorinen/.
Pełny tekst źródłaBurger, Florian. "The finite temperature QCD phase transition and the thermodynamic equation of state". Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2013. http://dx.doi.org/10.18452/16679.
Pełny tekst źródłaIn this thesis we report about an investigation of the finite temperature crossover/phase transition of quantum chromodynamics and the evaluation of the thermodynamic equation of state. To this end the lattice method and the Wilson twisted mass discretisation of the quark action are used. This formulation is known to have an automatic improvement of lattice artifacts and thus an improved continuum limit behaviour. This work presents first robust results using this action for the non-vanishing temperature case. We investigate the chiral limit of the two flavour phase transition with several small values of the pion mass in order to address the open question of the order of the transition in the limit of vanishing quark mass. For the currently simulated pion masses in the range of 300 to 700 MeV we present evidence that the finite temperature transition is a crossover transition rather than a genuine phase transition. The chiral limit is investigated by comparing the scaling of the observed crossover temperature with the mass including several possible scenarios. Complementary to this approach the chiral condensate as the order parameter for the spontaneous breaking of chiral symmetry is analysed in comparison with the O(4) universal scaling function which characterises a second order transition. With respect to thermodynamics the equation of state is obtained from the trace anomaly employing the temperature integral method which provides the pressure and energy density in the crossover region. The continuum limit of the trace anomaly is studied by considering several values of Nt and the tree-level correction technique.
Robaina, Fernandez Daniel [Verfasser]. "Static and dynamic properties of QCD at finite temperature / Daniel Robaina Fernandez". Mainz : Universitätsbibliothek Mainz, 2016. http://d-nb.info/1106573382/34.
Pełny tekst źródłaOevers, Manfred [Verfasser]. "The finite temperature phase diagram of 2-flavour QCD with improved Wilson fermions / Manfred Oevers". Bielefeld : Universitätsbibliothek Bielefeld, 1999. http://d-nb.info/1034401254/34.
Pełny tekst źródłaHeide, Johannes van der. "The pion form factor from lattice QCD a non-perturbative study at zero and finite temperature /". [S.l. : Amsterdam : s.n.] ; Universiteit van Amsterdam [Host], 2004. http://dare.uva.nl/document/76697.
Pełny tekst źródłaKsiążki na temat "Finite temperature QCD"
A, Patkós, United States. National Aeronautics and Space Administration. i Fermi National Accelerator Laboratory, red. Chiral interface at the finite temperature transition point of QCD. [Batavia, Ill.]: Fermi National Accelerator Laboratory, 1990.
Znajdź pełny tekst źródłaZinn-Justin, Jean. Quantum Field Theory and Critical Phenomena. Wyd. 5. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198834625.001.0001.
Pełny tekst źródłaCzęści książek na temat "Finite temperature QCD"
Karsch, Frithjof. "Lattice QCD at Finite Temperature". W QCD Perspectives on Hot and Dense Matter, 385–417. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0267-7_12.
Pełny tekst źródłaKarsch, Frithjof. "Critical Behaviour in Finite Temperature QCD". W Nuclear Matter in Different Phases and Transitions, 131–46. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4556-5_11.
Pełny tekst źródłaDominguez, Cesareo A. "QCD Sum Rules at Finite Temperature". W SpringerBriefs in Physics, 81–85. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97722-5_12.
Pełny tekst źródłaLeonidov, A. "On Power Corrections in Finite Temperature QCD". W Vacuum Structure in Intense Fields, 373–76. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4757-0441-9_25.
Pełny tekst źródłaBlaizot, J. P. "Quantum Fields at Finite Temperature: A Brief Introduction". W QCD Perspectives on Hot and Dense Matter, 305–26. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0267-7_9.
Pełny tekst źródłaDeGrand, Thomas. "Lattice Monte carlo calculations of finite temperature QCD". W Quark Matter '84, 17–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/3-540-15183-4_23.
Pełny tekst źródłaKarsch, F. "Lattice QCD at finite temperature: a status report". W Quark Matter, 147–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-83524-7_21.
Pełny tekst źródłaKarsch, Frithjof. "QCD at Finite Temperature and Baryon Number Density". W NATO ASI Series, 1–14. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2231-3_1.
Pełny tekst źródłaChandola, H. C., i H. C. Pandey. "Infrared Effective Dual QCD at Finite Temperature and Densities". W Springer Proceedings in Physics, 569–78. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4408-2_79.
Pełny tekst źródłaGubler, Philipp. "Quarkonium Spectra at Finite Temperature from QCD Sum Rules and MEM". W A Bayesian Analysis of QCD Sum Rules, 123–47. Tokyo: Springer Japan, 2013. http://dx.doi.org/10.1007/978-4-431-54318-3_7.
Pełny tekst źródłaStreszczenia konferencji na temat "Finite temperature QCD"
Laine, Mikko. "Finite-temperature QCD". W The XXVII International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2010. http://dx.doi.org/10.22323/1.091.0006.
Pełny tekst źródłaKarsch, Frithjof. "Lattice QCD at Finite Temperature". W NEW STATES OF MATTER IN HADRONIC INTERACTIONS:Pan American Advanced Study Institute. AIP, 2002. http://dx.doi.org/10.1063/1.1513678.
Pełny tekst źródłaFodor, Zoltan. "The finite temperature QCD transition". W The XXVIII International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2011. http://dx.doi.org/10.22323/1.105.0185.
Pełny tekst źródłaZeidlewicz, Lars, Ernst-Michael Ilgenfritz, Karl Jansen, Maria-Paola Lombardo, Michael Muller-Preussker, Marcus Petschlies, Owe Philipsen i Andre Sternbeck. "Twisted mass QCD at finite temperature". W The XXV International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2008. http://dx.doi.org/10.22323/1.042.0238.
Pełny tekst źródłaEjiri, Shinji. "Monopole Dynamics in Finite Temperature QCD". W Proceedings of the International RCNP Workshop. WORLD SCIENTIFIC, 1996. http://dx.doi.org/10.1142/9789814447140_0036.
Pełny tekst źródłaLarsen, Rasmus, Sayantan Sharma i Edward Shuryak. "Topological structures in finite temperature QCD". W The 36th Annual International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2019. http://dx.doi.org/10.22323/1.334.0156.
Pełny tekst źródłaGiannuzzi, Floriana, Leonardo Angelini, Pietro Colangelo, Fulvia De Fazio, G. E. Bruno, Donato Creanza i E. Nappi. "Finite temperature hadrons from holographic QCD". W QCD@WORK 2010: International Workshop on Quantum Chromodynamics: Theory and Experiment Beppe Nardulli Memorial Workshop. AIP, 2010. http://dx.doi.org/10.1063/1.3536582.
Pełny tekst źródłaTYTGAT, MICHEL H. G. "SOME ASPECTS OF LARGE NC AT FINITE TEMPERATURE". W Phenomenology of Large NC QCD. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776914_0003.
Pełny tekst źródłaPasztor, Attila, R. Bellotti, Sz Borsanyi, Z. Fodor, J. Gunther, C. Ratti, S. Katz i K. K. Szabo. "Fluctuations and correlations in finite temperature QCD". W 38th International Conference on High Energy Physics. Trieste, Italy: Sissa Medialab, 2017. http://dx.doi.org/10.22323/1.282.0369.
Pełny tekst źródłaStephens, C. R. "Environmentally friendly renormalization in finite temperature QCD". W First Latin American symposium on high energy physics and The VII Mexican School of Particles and Fields. AIP, 1997. http://dx.doi.org/10.1063/1.53238.
Pełny tekst źródłaRaporty organizacyjne na temat "Finite temperature QCD"
BLUM, T., M. CREUTZ i P. PETRECZKY. LATTICE QCD AT FINITE TEMPERATURE AND DENSITY. Office of Scientific and Technical Information (OSTI), luty 2004. http://dx.doi.org/10.2172/15006985.
Pełny tekst źródłaHidaka, Yoshimasa, i Peter Petreczky. Proceedings of RIKEN BNL Research Center Workshop: QCD in Finite Temperature and Heavy-Io Collisions. Office of Scientific and Technical Information (OSTI), marzec 2017. http://dx.doi.org/10.2172/1425142.
Pełny tekst źródła