Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Finite-Temperature properties.

Artykuły w czasopismach na temat „Finite-Temperature properties”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Finite-Temperature properties”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Ishii, Noriyoshi, Hideo Suganuma i Hideo Matsufuru. "Glueball properties at finite temperature". Nuclear Physics B - Proceedings Supplements 106-107 (marzec 2002): 516–18. http://dx.doi.org/10.1016/s0920-5632(01)01765-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Drabold, David A., P. A. Fedders, Stefan Klemm i Otto F. Sankey. "Finite-temperature properties of amorphous silicon". Physical Review Letters 67, nr 16 (14.10.1991): 2179–82. http://dx.doi.org/10.1103/physrevlett.67.2179.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Seibert, David, i Charles Gale. "Measuring hadron properties at finite temperature". Physical Review C 52, nr 2 (1.08.1995): R490—R494. http://dx.doi.org/10.1103/physrevc.52.r490.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Jaklič, J., i P. Prelovšek. "Finite-temperature properties of doped antiferromagnets". Advances in Physics 49, nr 1 (styczeń 2000): 1–92. http://dx.doi.org/10.1080/000187300243381.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Liu, Hanbin, i Kenneth D. Jordan. "Finite Temperature Properties of (CO2)nClusters". Journal of Physical Chemistry A 107, nr 30 (lipiec 2003): 5703–9. http://dx.doi.org/10.1021/jp0345295.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

HAN, FUXIANG, i YONGMEI ZHANG. "FINITE TEMPERATURE PROPERTIES OF OPTICAL LATTICES". International Journal of Modern Physics B 19, nr 31 (20.12.2005): 4567–86. http://dx.doi.org/10.1142/s0217979205032942.

Pełny tekst źródła
Streszczenie:
Within a mean-field treatment of the Bose–Hubbard model for an optical lattice, we have derived a self-consistent equation for the order parameter of possible phases in the optical lattice at finite temperatures. From the solutions to the self-consistent equation, we have inferred the temperature dependence of the order parameter and transition temperatures of Mott-insulator and superfluid phases into the normal phase. The condensation fraction in the superfluid phase has been deduced from the one-body density matrix and its temperature dependence has been given. In terms of the normalized correlation function of quasiparticles, strong coherence in the superfluid phase and its loss in Mott-insulator phases are demonstrated.
Style APA, Harvard, Vancouver, ISO itp.
7

Ju, Nengjiu, i Aurel Bulgac. "Finite-temperature properties of sodium clusters". Physical Review B 48, nr 4 (15.07.1993): 2721–32. http://dx.doi.org/10.1103/physrevb.48.2721.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Wu, K. L., S. K. Lai i W. D. Lin. "Finite temperature properties for zinc nanoclusters". Molecular Simulation 31, nr 6-7 (maj 2005): 399–403. http://dx.doi.org/10.1080/08927020412331332749.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

de Oliveira, N. A., i A. A. Gomes. "Laves phase pseudobinaries: finite temperature properties". Journal of Magnetism and Magnetic Materials 117, nr 1-2 (listopad 1992): 169–74. http://dx.doi.org/10.1016/0304-8853(92)90307-a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Yang, Jie, Jue-lian Shen i Hai-qing Lin. "Finite Temperature Properties of The FrustratedJ1-J2Model". Journal of the Physical Society of Japan 68, nr 7 (15.07.1999): 2384–89. http://dx.doi.org/10.1143/jpsj.68.2384.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Kumar, Priyank, N. K. Bhatt, P. R. Vyas i V. B. Gohel. "Thermophysical properties of iridium at finite temperature". Chinese Physics B 25, nr 11 (listopad 2016): 116401. http://dx.doi.org/10.1088/1674-1056/25/11/116401.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Bhatt, N. K., P. R. Vyas, V. B. Gohel i A. R. Jani. "Finite-temperature thermophysical properties of fcc-Ca". European Physical Journal B 58, nr 1 (lipiec 2007): 61–68. http://dx.doi.org/10.1140/epjb/e2007-00196-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Brunet, L. G., R. M. Ribeiro-Teixeira i J. R. Iglesias. "FINITE TEMPERATURE PROPERTIES OF THE ANDERSON LATTICE". Le Journal de Physique Colloques 49, nr C8 (grudzień 1988): C8–697—C8–698. http://dx.doi.org/10.1051/jphyscol:19888315.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Horwitz, G., i G. Kalbermann. "Properties of a finite-temperature supersymmetric ensemble". Physical Review D 38, nr 2 (15.07.1988): 714–17. http://dx.doi.org/10.1103/physrevd.38.714.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

PASSAMANI, TOMAZ, i MARIA LUIZA CESCATO. "HOT NUCLEAR MATTER PROPERTIES". International Journal of Modern Physics E 16, nr 09 (październik 2007): 3041–44. http://dx.doi.org/10.1142/s0218301307009002.

Pełny tekst źródła
Streszczenie:
The nuclear matter at finite temperature is described in the relativistic mean field theory using linear and nonlinear interactions. The behavior of effective nucleon mass with temperature was numerically calculated. For the nonlinear NL3 interaction we also observed the striking decrease at temperatures well below the nucleon mass. The calculation of NL3 nuclear matter equation of state at finite temperature is still on progress.
Style APA, Harvard, Vancouver, ISO itp.
16

DUNNE, GERALD V. "FINITE TEMPERATURE INDUCED FERMION NUMBER". International Journal of Modern Physics A 17, nr 06n07 (20.03.2002): 890–97. http://dx.doi.org/10.1142/s0217751x02010273.

Pełny tekst źródła
Streszczenie:
The induced fermion number at zero temperature is topological (in the sense that it is only sensitive to global asymptotic properties of the background field), and is a sharp observable (in the sense that it has vanishing rms fluctuations). At finite temperature, it is shown to be generically nontopological, and it is not a sharp observable.
Style APA, Harvard, Vancouver, ISO itp.
17

ITO, IKUO, i TADASHI KON. "THERMAL PROPERTIES OF PARASUPERSYMMETRIC OSCILLATOR". International Journal of Modern Physics A 07, nr 17 (10.07.1992): 3997–4014. http://dx.doi.org/10.1142/s0217751x92001782.

Pełny tekst źródła
Streszczenie:
Parasupersymmetric oscillator model of one bosonic and one order p parafermionic degrees of freedom at finite temperature is investigated in the framework of Thermo Field Dynamics (TFD). The temperature dependent vacuum |O(β)> is constructed and the generator of thermal unitary transformation |O(β)>=e−iG(β)|O> is obtained. We also comment on a signal of the parasuper-symmetry breaking at finite temperature.
Style APA, Harvard, Vancouver, ISO itp.
18

Shinozaki, Misako, Shintaro Hoshino, Yusuke Masaki, Jun-ichiro Kishine i Yusuke Kato. "Finite-Temperature Properties of Three-Dimensional Chiral Helimagnets". Journal of the Physical Society of Japan 85, nr 7 (15.07.2016): 074710. http://dx.doi.org/10.7566/jpsj.85.074710.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Yoshimi, Kazuyoshi, Makoto Naka i Hitoshi Seo. "Finite Temperature Properties of Geometrically Charge Frustrated Systems". Journal of the Physical Society of Japan 89, nr 3 (15.03.2020): 034003. http://dx.doi.org/10.7566/jpsj.89.034003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

LeSar, R., R. Najafabadi i D. J. Srolovitz. "Finite-temperature defect properties from free-energy minimization". Physical Review Letters 63, nr 6 (7.08.1989): 624–27. http://dx.doi.org/10.1103/physrevlett.63.624.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Ibarra, J. R. Morones, A. J. Garza Aguirre i Francisco V. Flores-Baez. "Properties of the sigma meson at finite temperature". International Journal of Modern Physics A 30, nr 35 (20.12.2015): 1550214. http://dx.doi.org/10.1142/s0217751x15502140.

Pełny tekst źródła
Streszczenie:
We study the changes of the mass and width of the sigma meson in the framework of the Linear Sigma Model at finite temperature, in the one-loop approximation. We have found that as the temperature increases, the mass of sigma shifts down. We have also analyzed the [Formula: see text]-spectral function and we observe an enhancement at the threshold which is a signature of partial restoration of chiral symmetry, also interpreted as a tendency to chiral phase transition. Additionally, we studied the width of the sigma, when the threshold enhancement takes place, for different values of the sigma mass. We found that there is a brief enlargement followed by an abrupt fall in the width as the temperature increases, which is also related with the restoration of chiral symmetry and an indication that the sigma is a bound state of two pions.
Style APA, Harvard, Vancouver, ISO itp.
22

López-Urı́as, F., G. M. Pastor i K. H. Bennemann. "Calculation of finite temperature magnetic properties of clusters". Journal of Applied Physics 87, nr 9 (maj 2000): 4909–11. http://dx.doi.org/10.1063/1.373199.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Haglin, Kevin L., i Charles Gale. "Properties of the φ-meson at finite temperature". Nuclear Physics B 421, nr 3 (czerwiec 1994): 613–31. http://dx.doi.org/10.1016/0550-3213(94)90519-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Hasegawa, H. "Finite-temperature surface properties of itinerant-electron ferromagnets". Journal of Physics F: Metal Physics 16, nr 3 (marzec 1986): 347–64. http://dx.doi.org/10.1088/0305-4608/16/3/013.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Kucharek, H., P. Ring i P. Schuck. "Pairing properties of nuclear matter at finite temperature". Zeitschrift f�r Physik A Atomic Nuclei 334, nr 2 (czerwiec 1989): 119–24. http://dx.doi.org/10.1007/bf01294212.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Baranov, M. A., V. S. Gorbachev i A. V. Senatorov. "Properties of the Josephson medium at finite temperature". Physica C: Superconductivity 179, nr 1-3 (sierpień 1991): 52–58. http://dx.doi.org/10.1016/0921-4534(91)90010-v.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Sun, Z., i J. H. Hetherington. "Magnetic properties of solid 3He at finite temperature". Journal of Low Temperature Physics 86, nr 5-6 (marzec 1992): 303–9. http://dx.doi.org/10.1007/bf00121500.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Lutz, M., S. Klimt i W. Weise. "Meson properties at finite temperature and baryon density". Nuclear Physics A 542, nr 4 (czerwiec 1992): 521–58. http://dx.doi.org/10.1016/0375-9474(92)90256-j.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Jaklic, J., i P. Prelovsek. "ChemInform Abstract: Finite-Temperature Properties of Doped Antiferromagnets". ChemInform 31, nr 42 (17.10.2000): no. http://dx.doi.org/10.1002/chin.200042249.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Spínola, Miguel, Shashank Saxena, Prateek Gupta, Brandon Runnels i Dennis M. Kochmann. "Finite-temperature grain boundary properties from quasistatic atomistics". Computational Materials Science 244 (wrzesień 2024): 113270. http://dx.doi.org/10.1016/j.commatsci.2024.113270.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Frick, M., i T. Schneider. "On the theory of layered high-temperature superconductors: Finite temperature properties". Zeitschrift f�r Physik B Condensed Matter 78, nr 2 (czerwiec 1990): 159–68. http://dx.doi.org/10.1007/bf01307831.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Iwasaki, Y., K. Kanaya, S. Sakai i T. Yoshié. "Chiral properties of dynamical Wilson quarks at finite temperature". Physical Review Letters 67, nr 12 (16.09.1991): 1494–97. http://dx.doi.org/10.1103/physrevlett.67.1494.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Stoffel, A. J., i M. Gulácsi. "Finite temperature properties of a supersolid: a RPA approach". European Physical Journal B 67, nr 2 (styczeń 2009): 169–81. http://dx.doi.org/10.1140/epjb/e2009-00018-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Lesar, R., i J. M. Rickman. "Finite-temperature properties of materials from analytical statistical mechanics". Philosophical Magazine B 73, nr 4 (kwiecień 1996): 627–39. http://dx.doi.org/10.1080/13642819608239140.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Umeda, Takashi, i Hideo Matsufuru. "Charmonium properties at finite temperature on quenched anisotropic lattices". Nuclear Physics B - Proceedings Supplements 140 (marzec 2005): 547–49. http://dx.doi.org/10.1016/j.nuclphysbps.2004.11.250.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Caldas, A., P. J. von Ranke i N. A. de Oliveira. "Finite temperature magnetic properties of the PrCo2 intermetallic compound". Physica B: Condensed Matter 253, nr 1-2 (październik 1998): 158–62. http://dx.doi.org/10.1016/s0921-4526(98)00055-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Rosenstein, B., A. D. Speliotopoulos i H. L. Yu. "Some properties of the finite temperature chiral phase transition". Physical Review D 49, nr 12 (15.06.1994): 6822–28. http://dx.doi.org/10.1103/physrevd.49.6822.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Craco, Luis. "Finite-temperature properties of the two-orbital Anderson model". Journal of Physics: Condensed Matter 11, nr 44 (20.10.1999): 8689–95. http://dx.doi.org/10.1088/0953-8984/11/44/307.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Borisenko, O., V. Petrov i G. Zinovjev. "Confining properties of noncompact gauge theories at finite temperature". Nuclear Physics B - Proceedings Supplements 42, nr 1-3 (kwiecień 1995): 466–68. http://dx.doi.org/10.1016/0920-5632(95)00281-d.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Shu, Song, i Jia-Rong Li. "Studying the baryon properties through chiral soliton model at finite temperature and density". International Journal of Modern Physics: Conference Series 29 (styczeń 2014): 1460213. http://dx.doi.org/10.1142/s2010194514602130.

Pełny tekst źródła
Streszczenie:
We have studied the chiral soliton model in a thermal vacuum. The soliton equations are solved at finite temperature and density. The temperature or density dependent soliton solutions are presented. The physical properties of baryons are derived from the soliton solutions at finite temperature and density. The temperature or density dependent variation of the baryon properties are discussed.
Style APA, Harvard, Vancouver, ISO itp.
41

MENEZES, DÉBORA P., i C. PROVIDÊNCIA. "FINITE TEMPERATURE EQUATIONS OF STATE FOR MIXED STARS". International Journal of Modern Physics D 13, nr 07 (sierpień 2004): 1249–53. http://dx.doi.org/10.1142/s0218271804005389.

Pełny tekst źródła
Streszczenie:
We investigate the properties of mixed stars formed by hadronic and quark matter in β-equilibrium described by appropriate equations of state (EOS) in the framework of relativistic mean-field theory. The calculations were performed for T=0 and for finite temperatures and also for fixed entropies with and without neutrino trapping in order to describe neutron and proto-neutron stars. The star properties are discussed. Maximum allowed masses for proto-neutron stars are much larger when neutrino trapping is imposed.
Style APA, Harvard, Vancouver, ISO itp.
42

Teo, Lee Peng. "Dispersive Correction to Casimir Force at Finite Temperature". Applied Mechanics and Materials 110-116 (październik 2011): 465–71. http://dx.doi.org/10.4028/www.scientific.net/amm.110-116.465.

Pełny tekst źródła
Streszczenie:
We study the dispersive correction to the finite temperature Casimir force acting on a pair of plates immersed in a magnetodielectric medium. We consider the case where both the plates are perfectly conducting and the case where one plate is perfectly conducting and one plate is infinitely permeable. Although the sign and the strength of the Casimir force depend strongly on the properties of the plates, it is found that in the high temperature regime, the Casimir force has a classical limit that does not depend on the properties of the medium separating the plates.
Style APA, Harvard, Vancouver, ISO itp.
43

Rickman, J. M., R. Najafabadi, L. Zhao i D. J. Srolovitz. "Finite-temperature properties of perfect crystals and defects from zero-temperature energy minimization". Journal of Physics: Condensed Matter 4, nr 21 (25.05.1992): 4923–34. http://dx.doi.org/10.1088/0953-8984/4/21/008.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Apalowo, RK, D. Chronopoulos, M. Ichchou, Y. Essa i F. Martin De La Escalera. "The impact of temperature on wave interaction with damage in composite structures". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 231, nr 16 (sierpień 2017): 3042–56. http://dx.doi.org/10.1177/0954406217718217.

Pełny tekst źródła
Streszczenie:
The increased use of composite materials in modern aerospace and automotive structures, and the broad range of launch vehicles’ operating temperature imply a great temperature range for which the structures has to be frequently and thoroughly inspected. A thermal mechanical analysis is used to experimentally measure the temperature-dependent mechanical properties of a composite layered panel in the range of −100 ℃ to 150 ℃. A hybrid wave finite element/finite element computational scheme is developed to calculate the temperature-dependent wave propagation and interaction properties of a system of two structural waveguides connected through a coupling joint. Calculations are made using the measured thermomechanical properties. Temperature-dependent wave propagation constants of each structural waveguide are obtained by the wave finite element approach and then coupled to the fully finite element described coupling joint, on which damage is modelled, in order to calculate the scattering magnitudes of the waves interaction with damage across the coupling joint. The significance of the panel’s glass transition range on the measured and calculated properties is emphasised. Numerical results are presented as illustration of the work.
Style APA, Harvard, Vancouver, ISO itp.
45

Fantoni, Riccardo. "One-component fermion plasma on a sphere at finite temperature". International Journal of Modern Physics C 29, nr 08 (sierpień 2018): 1850064. http://dx.doi.org/10.1142/s012918311850064x.

Pełny tekst źródła
Streszczenie:
We study through a computer experiment, using the restricted path integral Monte Carlo method, a one-component fermion plasma on a sphere at finite, nonzero, temperature. We extract thermodynamic properties like the kinetic and internal energy per particle and structural properties like the radial distribution function. This study could be relevant for the characterization and better understanding of the electronic properties of hollow graphene spheres.
Style APA, Harvard, Vancouver, ISO itp.
46

Feuston, Bradley P., Wanda Andreoni, Michele Parrinello i Enrico Clementi. "Electronic and vibrational properties ofC60at finite temperature fromab initiomolecular dynamics". Physical Review B 44, nr 8 (15.08.1991): 4056–59. http://dx.doi.org/10.1103/physrevb.44.4056.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Koskinen, P., M. Koskinen i M. Manninen. "Low-energy spectrum and finite temperature properties of quantum rings". European Physical Journal B 28, nr 4 (sierpień 2002): 483–89. http://dx.doi.org/10.1140/epjb/e2002-00251-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Lopez-Arias, Teresa, i Augusto Smerzi. "Kinetic properties of a Bose-Einstein gas at finite temperature". Physical Review A 58, nr 1 (1.07.1998): 526–30. http://dx.doi.org/10.1103/physreva.58.526.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Goedecker, S. "Decay properties of the finite-temperature density matrix in metals". Physical Review B 58, nr 7 (15.08.1998): 3501–2. http://dx.doi.org/10.1103/physrevb.58.3501.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Haule, K., J. Bonča i P. Prelovšek. "Finite-temperature properties of the two-dimensional Kondo lattice model". Physical Review B 61, nr 4 (15.01.2000): 2482–87. http://dx.doi.org/10.1103/physrevb.61.2482.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii