Gotowa bibliografia na temat „Finite semigroups”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Finite semigroups”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Finite semigroups"
LE SAEC, BERTRAND, JEAN-ERIC PIN i PASCAL WEIL. "SEMIGROUPS WITH IDEMPOTENT STABILIZERS AND APPLICATIONS TO AUTOMATA THEORY". International Journal of Algebra and Computation 01, nr 03 (wrzesień 1991): 291–314. http://dx.doi.org/10.1142/s0218196791000195.
Pełny tekst źródłaShoji, Kunitaka. "Regular Semigroups Which Are Amalgamation Bases for Finite Semigroups". Algebra Colloquium 14, nr 02 (czerwiec 2007): 245–54. http://dx.doi.org/10.1142/s1005386707000247.
Pełny tekst źródłaGuo, Xiaojiang, i Lin Chen. "Semigroup algebras of finite ample semigroups". Proceedings of the Royal Society of Edinburgh: Section A Mathematics 142, nr 2 (21.03.2012): 371–89. http://dx.doi.org/10.1017/s0308210510000715.
Pełny tekst źródłaBirget, Jean-Camille, Stuart Margolis i John Rhodes. "Semigroups whose idempotents form a subsemigroup". Bulletin of the Australian Mathematical Society 41, nr 2 (kwiecień 1990): 161–84. http://dx.doi.org/10.1017/s0004972700017986.
Pełny tekst źródłaVERNITSKI, ALEXEI. "ORDERED AND $\mathcal{J}$-TRIVIAL SEMIGROUPS AS DIVISORS OF SEMIGROUPS OF LANGUAGES". International Journal of Algebra and Computation 18, nr 07 (listopad 2008): 1223–29. http://dx.doi.org/10.1142/s021819670800486x.
Pełny tekst źródłaAlmeida, J., M. H. Shahzamanian i M. Kufleitner. "Nilpotency and strong nilpotency for finite semigroups". Quarterly Journal of Mathematics 70, nr 2 (21.11.2018): 619–48. http://dx.doi.org/10.1093/qmath/hay059.
Pełny tekst źródłaAsh, C. J., i T. E. Hall. "Finite semigroups with commuting idempotents". Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics 43, nr 1 (sierpień 1987): 81–90. http://dx.doi.org/10.1017/s1446788700028998.
Pełny tekst źródłaIWAKI, E., E. JESPERS, S. O. JURIAANS i A. C. SOUZA FILHO. "HYPERBOLICITY OF SEMIGROUP ALGEBRAS II". Journal of Algebra and Its Applications 09, nr 06 (grudzień 2010): 871–76. http://dx.doi.org/10.1142/s0219498810004270.
Pełny tekst źródłaJACKSON, DAVID A. "DECISION AND SEPARABILITY PROBLEMS FOR BAUMSLAG–SOLITAR SEMIGROUPS". International Journal of Algebra and Computation 12, nr 01n02 (luty 2002): 33–49. http://dx.doi.org/10.1142/s0218196702000857.
Pełny tekst źródłaDolinka, Igor, i Robert D. Gray. "Universal locally finite maximally homogeneous semigroups and inverse semigroups". Forum Mathematicum 30, nr 4 (1.07.2018): 947–71. http://dx.doi.org/10.1515/forum-2017-0074.
Pełny tekst źródłaRozprawy doktorskie na temat "Finite semigroups"
Wilson, Wilf A. "Computational techniques in finite semigroup theory". Thesis, University of St Andrews, 2019. http://hdl.handle.net/10023/16521.
Pełny tekst źródłaDistler, Andreas. "Classification and enumeration of finite semigroups". Thesis, St Andrews, 2010. http://hdl.handle.net/10023/945.
Pełny tekst źródłaHum, Marcus. "The representation theory of finite semigroups /". Thesis, McGill University, 2000. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=33409.
Pełny tekst źródłaRodgers, James David, i jdr@cgs vic edu au. "On E-Pseudovarieties of Finite Regular Semigroups". RMIT University. Mathematical and Geospatial Sciences, 2007. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20080808.155720.
Pełny tekst źródłaDistler, Andreas [Verfasser]. "Classification and Enumeration of Finite Semigroups / Andreas Distler". Aachen : Shaker, 2010. http://d-nb.info/1081886196/34.
Pełny tekst źródłaTesson, Pascal. "Computational complexity questions related to finite monoids and semigroups". Thesis, McGill University, 2003. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=84441.
Pełny tekst źródłaWe first consider the "program over monoid" model of D. Barrington and D. Therien [BT88] and set out to answer two fundamental questions: which monoids are rich enough to recognize arbitrary languages via programs of arbitrary length, and which monoids are so weak that any program over them has an equivalent of polynomial length? We find evidence that the two notions are dual and in particular prove that every monoid in DS has exactly one of these two properties. We also prove that for certain "weak" varieties of monoids, programs can only recognize those languages with a "neutral letter" that can be recognized via morphisms over that variety.
We then build an algebraic approach to communication complexity, a field which has been of great importance in the study of small complexity classes. We prove that every monoid has communication complexity O(1), &THgr;(log n) or &THgr;(n) in this model. We obtain similar classifications for the communication complexity of finite monoids in the probabilistic, simultaneous, probabilistic simultaneous and MOD p-counting variants of this two-party model and thus characterize the communication complexity (in a worst-case partition sense) of every regular language in these five models. Furthermore, we study the same questions in the Chandra-Furst-Lipton multiparty extension of the classical communication model and describe the variety of monoids which have bounded 3-party communication complexity and bounded k-party communication complexity for some k. We also show how these bounds can be used to establish computational limitations of programs over certain classes of monoids.
Finally, we consider the computational complexity of testing if an equation or a system of equations over some fixed finite monoid (or semigroup) has a solution.
Garba, Goje Uba. "Idempotents, nilpotents, rank and order in finite transformation semigroups". Thesis, University of St Andrews, 1992. http://hdl.handle.net/10023/13703.
Pełny tekst źródłaAlAli, Amal. "Cosets in inverse semigroups and inverse subsemigroups of finite index". Thesis, Heriot-Watt University, 2016. http://hdl.handle.net/10399/3185.
Pełny tekst źródłaAbu-Ghazalh, Nabilah Hani. "Finiteness conditions for unions of semigroups". Thesis, University of St Andrews, 2013. http://hdl.handle.net/10023/3687.
Pełny tekst źródłaAwang, Jennifer S. "Dots and lines : geometric semigroup theory and finite presentability". Thesis, University of St Andrews, 2015. http://hdl.handle.net/10023/6923.
Pełny tekst źródłaKsiążki na temat "Finite semigroups"
Ganyushkin, Olexandr, i Volodymyr Mazorchuk. Classical Finite Transformation Semigroups. London: Springer London, 2009. http://dx.doi.org/10.1007/978-1-84800-281-4.
Pełny tekst źródłaRhodes, John, i Benjamin Steinberg. The q-theory of Finite Semigroups. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/b104443.
Pełny tekst źródłaVolodymyr, Mazorchuk, red. Classical finite transformation semigroups: An introduction. London: Springer, 2009.
Znajdź pełny tekst źródłaKoli︠a︡da, S. F. Dynamics and numbers: A special program, June 1-July 31, 2014, Max Planck Institute for Mathematics, Bonn, Germany : international conference, July 21-25, 2014, Max Planck Institute for Mathematics, Bonn, Germany. Redaktor Max-Planck-Institut für Mathematik. Providence, Rhode Island: American Mathematical Society, 2016.
Znajdź pełny tekst źródłaFinite Semigroups and Universal Algebra. World Scientific Publishing Co Pte Ltd, 1995.
Znajdź pełny tekst źródłaFinite semigroups and universal algebra. Singapore: World Scientific, 1994.
Znajdź pełny tekst źródłaFinite Semigroups and Universal Algebra. World Scientific Publishing Co Pte Ltd, 1995.
Znajdź pełny tekst źródłaSteinberg, Benjamin. Representation Theory of Finite Monoids. Springer International Publishing AG, 2016.
Znajdź pełny tekst źródłaSteinberg, Benjamin. Representation Theory of Finite Monoids. Springer International Publishing AG, 2016.
Znajdź pełny tekst źródłaRhodes, John, i Benjamin Steinberg. The q-theory of Finite Semigroups. Springer, 2010.
Znajdź pełny tekst źródłaCzęści książek na temat "Finite semigroups"
Straubing, Howard. "Finite Semigroups". W Finite Automata, Formal Logic, and Circuit Complexity, 53–78. Boston, MA: Birkhäuser Boston, 1994. http://dx.doi.org/10.1007/978-1-4612-0289-9_5.
Pełny tekst źródłaAsh, C. J. "Finite Idempotent-Commuting Semigroups". W Semigroups and Their Applications, 13–23. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3839-7_2.
Pełny tekst źródłaPin, J. E. "Structure of Finite Semigroups". W Varieties of Formal Languages, 45–78. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2215-3_4.
Pełny tekst źródłaRenner, Lex E. "Finite Reductive Monoids". W Semigroups, Formal Languages and Groups, 369–80. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0149-3_12.
Pełny tekst źródłaGil’, Michael I. "Strongly Continuous Semigroups". W Stability of Finite and Infinite Dimensional Systems, 261–84. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5575-9_13.
Pełny tekst źródłaPin, J. E. "Power Semigroups and Related Varieties of Finite Semigroups". W Semigroups and Their Applications, 139–52. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3839-7_18.
Pełny tekst źródłaHall, T. E. "Finite Inverse Semigroups and Amalgamation". W Semigroups and Their Applications, 51–56. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3839-7_7.
Pełny tekst źródłaFroidure, Véronique, i Jean-Eric Pin. "Algorithms for computing finite semigroups". W Foundations of Computational Mathematics, 112–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60539-0_9.
Pełny tekst źródłaRhodes, John, i Benjamin Steinberg. "The Complexity of Finite Semigroups". W Springer Monographs in Mathematics, 1–172. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-09781-7_4.
Pełny tekst źródłaKublanovskii, S. I. "Algorithmic Problems for Finite Groups and Finite Semigroups". W Algorithmic Problems in Groups and Semigroups, 161–70. Boston, MA: Birkhäuser Boston, 2000. http://dx.doi.org/10.1007/978-1-4612-1388-8_9.
Pełny tekst źródłaStreszczenia konferencji na temat "Finite semigroups"
ALMEIDA, J. "DYNAMICS OF FINITE SEMIGROUPS". W Semigroups, Algorithms, Automata and Languages. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776884_0009.
Pełny tekst źródłaBULATOV, ANDREI, PETER JEAVONS i MIKHAIL VOLKOV. "FINITE SEMIGROUPS IMPOSING TRACTABLE CONSTRAINTS". W Semigroups, Algorithms, Automata and Languages. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776884_0011.
Pełny tekst źródłaTROTTER, PETER G. "DECIDABILITY PROBLEMS IN FINITE SEMIGROUPS". W Semigroups, Algorithms, Automata and Languages. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776884_0022.
Pełny tekst źródłaKozhukhov, Igor Borisovich, i Ksenia Anatolievna Kolesnikova. "Some conditions of finiteness on polygons over semigroups". W Academician O.B. Lupanov 14th International Scientific Seminar "Discrete Mathematics and Its Applications". Keldysh Institute of Applied Mathematics, 2022. http://dx.doi.org/10.20948/dms-2022-68.
Pełny tekst źródłaRIBES, LUIS. "PROFINITE GROUPS AND APPLICATIONS TO FINITE SEMIGROUPS". W Semigroups, Algorithms, Automata and Languages. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776884_0008.
Pełny tekst źródłaSTRAUBING, HOWARD. "FINITE SEMIGROUPS AND THE LOGICAL DESCRIPTION OF REGULAR LANGUAGES". W Semigroups, Algorithms, Automata and Languages. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776884_0020.
Pełny tekst źródłaALMEIDA, JORGE. "FINITE SEMIGROUPS: AN INTRODUCTION TO A UNIFIED THEORY OF PSEUDOVARIETIES". W Semigroups, Algorithms, Automata and Languages. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776884_0001.
Pełny tekst źródłaVOLKOV, M. V. "THE FINITE BASIS PROBLEM FOR FINITE SEMIGROUPS: A SURVEY". W Proceedings of the International Conference. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812792310_0017.
Pełny tekst źródłaFERNANDES, VíTOR H. "PRESENTATIONS FOR SOME MONOIDS OF PARTIAL TRANSFORMATIONS ON A FINITE CHAIN: A SURVEY". W Semigroups, Algorithms, Automata and Languages. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776884_0015.
Pełny tekst źródłaDenecke, K., i Y. Susanti. "Semigroups of n-ary Operations on Finite Sets". W The International Conference on Algebra 2010 - Advances in Algebraic Structures. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814366311_0011.
Pełny tekst źródła