Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Finite groups.

Artykuły w czasopismach na temat „Finite groups”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Finite groups”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

A. Jund, Asaad, i Haval M. Mohammed Salih. "Result Involution Graphs of Finite Groups". Journal of Zankoy Sulaimani - Part A 23, nr 1 (20.06.2021): 113–18. http://dx.doi.org/10.17656/jzs.10846.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Zhang, Jinshan, Zhencai Shen i Jiangtao Shi. "Finite groups with few vanishing elements". Glasnik Matematicki 49, nr 1 (8.06.2014): 83–103. http://dx.doi.org/10.3336/gm.49.1.07.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Kondrat'ev, A. S., A. A. Makhnev i A. I. Starostin. "Finite groups". Journal of Soviet Mathematics 44, nr 3 (luty 1989): 237–318. http://dx.doi.org/10.1007/bf01676868.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Andruskiewitsch, N., i G. A. García. "Extensions of Finite Quantum Groups by Finite Groups". Transformation Groups 14, nr 1 (18.11.2008): 1–27. http://dx.doi.org/10.1007/s00031-008-9039-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Conrad, Paul F., i Jorge Martinez. "Locally finite conditions on lattice-ordered groups". Czechoslovak Mathematical Journal 39, nr 3 (1989): 432–44. http://dx.doi.org/10.21136/cmj.1989.102314.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Chen, Yuanqian, Paul Conrad i Michael Darnel. "Finite-valued subgroups of lattice-ordered groups". Czechoslovak Mathematical Journal 46, nr 3 (1996): 501–12. http://dx.doi.org/10.21136/cmj.1996.127311.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Kniahina, V. N., i V. S. Monakhov. "Finite groups with semi-subnormal Schmidt subgroups". Algebra and Discrete Mathematics 29, nr 1 (2020): 66–73. http://dx.doi.org/10.12958/adm1376.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Cao, Jian Ji, i Xiu Yun Guo. "Finite NPDM-groups". Acta Mathematica Sinica, English Series 37, nr 2 (luty 2021): 306–14. http://dx.doi.org/10.1007/s10114-021-8047-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Burn, R. P., L. C. Grove i C. T. Benson. "Finite Reflection Groups". Mathematical Gazette 70, nr 451 (marzec 1986): 77. http://dx.doi.org/10.2307/3615867.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Stonehewer, S. E. "FINITE SOLUBLE GROUPS". Bulletin of the London Mathematical Society 25, nr 5 (wrzesień 1993): 505–6. http://dx.doi.org/10.1112/blms/25.5.505.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

MCIVER, ANNABELLE, i PETER M. NEUMANN. "ENUMERATING FINITE GROUPS". Quarterly Journal of Mathematics 38, nr 4 (1987): 473–88. http://dx.doi.org/10.1093/qmath/38.4.473.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Cherlin, Gregory, i Ulrich Felgner. "Homogeneous Finite Groups". Journal of the London Mathematical Society 62, nr 3 (grudzień 2000): 784–94. http://dx.doi.org/10.1112/s0024610700001484.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Blackburn, Norman, Marian Deaconescu i Avinoam Mann. "Finite equilibrated groups". Mathematical Proceedings of the Cambridge Philosophical Society 120, nr 4 (listopad 1996): 579–88. http://dx.doi.org/10.1017/s0305004100001560.

Pełny tekst źródła
Streszczenie:
If H, K are subgroups of a group G, then HK is a subgroup of G if and only if HK = KH. This condition certainly holds if H ≤ NG(K) or K ≤ NG(H). But the majority of groups can also be expressed as HK, where neither H nor K is normal. In this paper we consider groups G for which no subgroup G1 can be expressed as the product of non-normal subgroups of G1. Such a group is said to be equilibrated. Thus G is equilibrated if and only if either H ≤ NG(K) or K ≤ NG(H) whenever H, K and HK are subgroups of G.
Style APA, Harvard, Vancouver, ISO itp.
14

Heineken, Hermann. "Finite complete groups". Rendiconti del Seminario Matematico e Fisico di Milano 54, nr 1 (grudzień 1985): 29–34. http://dx.doi.org/10.1007/bf02924848.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Starostin, A. I. "Finite p-groups". Journal of Mathematical Sciences 88, nr 4 (luty 1998): 559–85. http://dx.doi.org/10.1007/bf02365317.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Myl’nikov, A. L. "Finite tangled groups". Siberian Mathematical Journal 48, nr 2 (marzec 2007): 295–99. http://dx.doi.org/10.1007/s11202-007-0030-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Myasnikov, Alexei, i Denis Osin. "Algorithmically finite groups". Journal of Pure and Applied Algebra 215, nr 11 (listopad 2011): 2789–96. http://dx.doi.org/10.1016/j.jpaa.2011.03.019.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Huang, Hua-Lin, Yuping Yang i Yinhuo Zhang. "On nondiagonal finite quasi-quantum groups over finite abelian groups". Selecta Mathematica 24, nr 5 (7.06.2018): 4197–221. http://dx.doi.org/10.1007/s00029-018-0420-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Reid, J. D. "On Finite Groups and Finite Fields". American Mathematical Monthly 98, nr 6 (czerwiec 1991): 549. http://dx.doi.org/10.2307/2324878.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

WILSON, JOHN S. "FINITE AXIOMATIZATION OF FINITE SOLUBLE GROUPS". Journal of the London Mathematical Society 74, nr 03 (grudzień 2006): 566–82. http://dx.doi.org/10.1112/s0024610706023106.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Lubotzky, Alexander, i Avinoam Mann. "Residually finite groups of finite rank". Mathematical Proceedings of the Cambridge Philosophical Society 106, nr 3 (listopad 1989): 385–88. http://dx.doi.org/10.1017/s0305004100068110.

Pełny tekst źródła
Streszczenie:
The recent constructions, by Rips and Olshanskii, of infinite groups with all proper subgroups of prime order, and similar ‘monsters’, show that even under the imposition of apparently very strong finiteness conditions, the structure of infinite groups can be rather weird. Thus it seems reasonable to impose the type of condition that enables us to apply the theory of finite groups. Two such conditions are local finiteness and residual finiteness, and here we are interested in the latter. Specifically, we consider residually finite groups of finite rank, where a group is said to have rank r, if all finitely generated subgroups of it can be generated by r elements. Recall that a group is said to be virtually of some property, if it has a subgroup of finite index with this property. We prove the following result:Theorem 1. A residually finite group of finite rank is virtually locally soluble.
Style APA, Harvard, Vancouver, ISO itp.
22

Reid, J. D. "On Finite Groups and Finite Fields". American Mathematical Monthly 98, nr 6 (czerwiec 1991): 549–51. http://dx.doi.org/10.1080/00029890.1991.11995756.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Wei, X., A. Kh Zhurtov, D. V. Lytkina i V. D. Mazurov. "Finite groups close to Frobenius groups". Sibirskii matematicheskii zhurnal 60, nr 5 (30.08.2019): 1035–40. http://dx.doi.org/10.33048/smzh.2019.60.504.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Sozutov, A. I. "Groups Saturated with Finite Frobenius Groups". Mathematical Notes 109, nr 1-2 (styczeń 2021): 270–79. http://dx.doi.org/10.1134/s0001434621010314.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Wei, X., A. Kh Zhurtov, D. V. Lytkina i V. D. Mazurov. "Finite Groups Close to Frobenius Groups". Siberian Mathematical Journal 60, nr 5 (wrzesień 2019): 805–9. http://dx.doi.org/10.1134/s0037446619050045.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Lubotzky, Alexander, i Avinoam Mann. "Powerful p-groups. I. Finite groups". Journal of Algebra 105, nr 2 (luty 1987): 484–505. http://dx.doi.org/10.1016/0021-8693(87)90211-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Lytkina, D. V. "Groups saturated by finite simple groups". Algebra and Logic 48, nr 5 (wrzesień 2009): 357–70. http://dx.doi.org/10.1007/s10469-009-9063-z.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Pettet, Martin R. "Locally finite groups as automorphism groups". Archiv der Mathematik 48, nr 1 (styczeń 1987): 1–9. http://dx.doi.org/10.1007/bf01196346.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Hussain, Muhammad Tanveer, i Shamsher Ullah. "On nearly SΦ-normal subgroups of finite groups". Algebra and Discrete Mathematics 36, nr 2 (2023): 151–65. http://dx.doi.org/10.12958/adm2007.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Li, Changwen. "On weakly s-normal subgroups of finite groups". Algebra and Discrete Mathematics 36, nr 2 (2023): 179–87. http://dx.doi.org/10.12958/adm1673.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Trofimuk, Alexander. "FINITE GROUPS WITH GIVEN SYSTEMS OF PROPERMUTABLE SUBGROUPS". Eurasian Mathematical Journal 15, nr 1 (2024): 91–97. http://dx.doi.org/10.32523/2077-9879-2024-15-1-91-97.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Zimmerman, Jay. "Finite Groups Which are Automorphism Groups of Infinite Groups Only". Canadian Mathematical Bulletin 28, nr 1 (1.03.1985): 84–90. http://dx.doi.org/10.4153/cmb-1985-008-4.

Pełny tekst źródła
Streszczenie:
AbstractThe object of this paper is to exhibit an infinite set of finite semisimple groups H, each of which is the automorphism group of some infinite group, but of no finite group. We begin the construction by choosing a finite simple group S whose outer automorphism group and Schur multiplier possess certain specified properties. The group H is a certain subgroup of Aut S which contains S. For example, most of the PSL's over a non-prime finite field are candidates for S, and in this case, H is generated by all of the inner, diagonal and graph automorphisms of S.
Style APA, Harvard, Vancouver, ISO itp.
33

Bandman, Tatiana, Gert-Martin Greuel, Fritz Grunewald, Boris Kunyavskii, Gerhard Pfister i Eugene Plotkin. "Identities for finite solvable groups and equations in finite simple groups". Compositio Mathematica 142, nr 03 (maj 2006): 734–64. http://dx.doi.org/10.1112/s0010437x0500179x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Kozhukhov, S. F. "FINITE AUTOMORPHISM GROUPS OF TORSION-FREE ABELIAN GROUPS OF FINITE RANK". Mathematics of the USSR-Izvestiya 32, nr 3 (30.06.1989): 501–21. http://dx.doi.org/10.1070/im1989v032n03abeh000778.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Durakov, B. E., i A. I. Sozutov. "On Periodic Groups Saturated with Finite Frobenius Groups". Bulletin of Irkutsk State University. Series Mathematics 35 (2021): 73–86. http://dx.doi.org/10.26516/1997-7670.2021.35.73.

Pełny tekst źródła
Streszczenie:
A group is called weakly conjugate biprimitively finite if each its element of prime order generates a finite subgroup with any of its conjugate elements. A binary finite group is a periodic group in which any two elements generate a finite subgroup. If $\mathfrak{X}$ is some set of finite groups, then the group $G$ saturated with groups from the set $\mathfrak{X}$ if any finite subgroup of $G$ is contained in a subgroup of $G$, isomorphic to some group from $\mathfrak{X}$. A group $G = F \leftthreetimes H$ is a Frobenius group with kernel $F$ and a complement $H$ if $H \cap H^f = 1$ for all $f \in F^{\#}$ and each element from $G \setminus F$ belongs to a one conjugated to $H$ subgroup of $G$. In the paper we prove that a saturated with finite Frobenius groups periodic weakly conjugate biprimitive finite group with a nontrivial locally finite radical is a Frobenius group. A number of properties of such groups and their quotient groups by a locally finite radical are found. A similar result was obtained for binary finite groups with the indicated conditions. Examples of periodic non locally finite groups with the properties above are given, and a number of questions on combinatorial group theory are raised.
Style APA, Harvard, Vancouver, ISO itp.
36

Borovik, Alexandre, i Ulla Karhumäki. "Locally finite groups of finite centralizer dimension". Journal of Group Theory 22, nr 4 (1.07.2019): 729–40. http://dx.doi.org/10.1515/jgth-2018-0109.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Zimmermann, Bruno. "Finite groups of outer automorphisms of free groups". Glasgow Mathematical Journal 38, nr 3 (wrzesień 1996): 275–82. http://dx.doi.org/10.1017/s0017089500031700.

Pełny tekst źródła
Streszczenie:
Let Fr denote the free group of rank r and Out Fr: = AutFr/Inn Fr the outer automorphism group of Fr (automorphisms modulo inner automorphisms). In [10] we determined the maximal order 2rr! (for r > 2) for finite subgroups of Out Fr as well as the finite subgroup of that order which, for r > 3, is unique up to conjugation. In the present paper we determine all maximal finite subgroups (that is not contained in a larger finite subgroup) of Out F3, up to conjugation (Theorem 2 in Section 3). Here the considered case r = 3 serves as a model case: our method can be applied for other small values of r (in principle for any value of r) but the computations become considerably longer and are more apt for a computer then; the method can also be applied to determine the maximal finite subgroups of the automorphism group Aut Fr of Fr. Note that the canonical projection Aut Fr ⃗ Out Fr is injective on finite subgroups of Aut Fr; however, not all finite subgroups of Out Fr lift to finite subgroups of Aut Fr.
Style APA, Harvard, Vancouver, ISO itp.
38

Cheung, K., i M. Mosca. "Decomposing finite Abelian groups". Quantum Information and Computation 1, nr 3 (październik 2001): 26–32. http://dx.doi.org/10.26421/qic1.3-2.

Pełny tekst źródła
Streszczenie:
This paper describes a quantum algorithm for efficiently decomposing finite Abelian groups into a product of cyclic groups. Such a decomposition is needed in order to apply the Abelian hidden subgroup algorithm. Such a decomposition (assuming the Generalized Riemann Hypothesis) also leads to an efficient algorithm for computing class numbers (known to be at least as difficult as factoring).
Style APA, Harvard, Vancouver, ISO itp.
39

Leavitt, J. L., G. J. Sherman i M. E. Walker. "Rewriteability in Finite Groups". American Mathematical Monthly 99, nr 5 (maj 1992): 446. http://dx.doi.org/10.2307/2325089.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Witbooi, Peter. "Finite images of groups". Quaestiones Mathematicae 23, nr 3 (wrzesień 2000): 279–85. http://dx.doi.org/10.2989/16073600009485977.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Gil, Antoni, i José R. Martínez. "Mutations in finite groups". Bulletin of the Belgian Mathematical Society - Simon Stevin 1, nr 4 (1994): 491–506. http://dx.doi.org/10.36045/bbms/1103408606.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Huang, J., B. Hu i A. N. Skiba. "Finite generalized soluble groups". Algebra i logika 58, nr 2 (9.07.2019): 252–70. http://dx.doi.org/10.33048/alglog.2019.58.207.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Chuang, Joseph, Markus Linckelmann, Gunter Malle i Jeremy Rickard. "Representations of Finite Groups". Oberwolfach Reports 9, nr 1 (2012): 963–1019. http://dx.doi.org/10.4171/owr/2012/16.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Chuang, Joseph, Meinolf Geck, Markus Linckelmann i Gabriel Navarro. "Representations of Finite Groups". Oberwolfach Reports 12, nr 2 (2015): 971–1027. http://dx.doi.org/10.4171/owr/2015/18.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Chuang, Joseph, Meinolf Geck, Radha Kessar i Gabriel Navarro. "Representations of Finite Groups". Oberwolfach Reports 16, nr 1 (26.02.2020): 841–95. http://dx.doi.org/10.4171/owr/2019/14.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Sun, Zhi-Wei. "Finite coverings of groups". Fundamenta Mathematicae 134, nr 1 (1990): 37–53. http://dx.doi.org/10.4064/fm-134-1-37-53.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Chupordia, V. A. "On finite-finitary groups". Researches in Mathematics 15 (15.02.2021): 154. http://dx.doi.org/10.15421/240723.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Broto, Carles, i Jesper Møller. "Chevalleyp–local finite groups". Algebraic & Geometric Topology 7, nr 4 (18.12.2007): 1809–919. http://dx.doi.org/10.2140/agt.2007.7.1809.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Deaconescu, Marian, i Gary L. Walls. "Finite Groups with Poles". Algebra Colloquium 13, nr 03 (wrzesień 2006): 507–12. http://dx.doi.org/10.1142/s1005386706000459.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Attar, M. Shabani. "Semicomplete Finite p-Groups". Algebra Colloquium 18, spec01 (grudzień 2011): 937–44. http://dx.doi.org/10.1142/s1005386711000812.

Pełny tekst źródła
Streszczenie:
Let G be a group and G' be its commutator subgroup. An automorphism α of G is called an IA-automorphism if x-1α (x) ∈ G' for each x ∈ G. The set of all IA-automorphisms of G is denoted by IA (G). A group G is called semicomplete if and only if IA (G)= Inn (G), where Inn (G) is the inner automorphism group of G. In this paper we characterize semicomplete finite p-groups of class 2, give some necessary conditions for finite p-groups to be semicomplete, and characterize semicomplete non-abelian groups of orders p4 and p5.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii