Artykuły w czasopismach na temat „Finite Graphene Sheets”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Finite Graphene Sheets”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Ahmadi, M., R. Ansari, and S. Rouhi. "Investigating the thermal conductivity of concrete/graphene nanocomposite by a multi-scale modeling approach." International Journal of Modern Physics B 32, no. 14 (2018): 1850171. http://dx.doi.org/10.1142/s0217979218501710.
Pełny tekst źródłaZhen, Cai Ru, Yu Li Chen, Chuan Qiao, and Qi Jun Liu. "Atomistic Simulation on Buckling Behavior of Monolayer Graphene." Advanced Materials Research 1095 (March 2015): 35–38. http://dx.doi.org/10.4028/www.scientific.net/amr.1095.35.
Pełny tekst źródłaPetrushenko, Igor K. "DFT Study on Adiabatic and Vertical Ionization Potentials of Graphene Sheets." Advances in Materials Science and Engineering 2015 (2015): 1–7. http://dx.doi.org/10.1155/2015/262513.
Pełny tekst źródłaKazemi, Seyedeh Alieh, Sadegh Imani Yengejeh, and Andreas Öchsner. "On the Modeling of Eigenmodes and Eigenfrequencies of Carbon Graphene Sheets under the Influence of Vacancy Defects." Journal of Nano Research 38 (January 2016): 101–6. http://dx.doi.org/10.4028/www.scientific.net/jnanor.38.101.
Pełny tekst źródłaWang, Xiunan, Yi Liu, Jingcheng Xu, et al. "Molecular Dynamics Study of Stability and Diffusion of Graphene-Based Drug Delivery Systems." Journal of Nanomaterials 2015 (2015): 1–14. http://dx.doi.org/10.1155/2015/872079.
Pełny tekst źródłaDobrescu, Oana-Ancuta, and M. Apostol. "Tight-binding approximation for bulk and edge electronic states in graphene." Canadian Journal of Physics 93, no. 5 (2015): 580–84. http://dx.doi.org/10.1139/cjp-2014-0313.
Pełny tekst źródłaREDDY, C. D., S. RAJENDRAN, and K. M. LIEW. "EQUIVALENT CONTINUUM MODELING OF GRAPHENE SHEETS." International Journal of Nanoscience 04, no. 04 (2005): 631–36. http://dx.doi.org/10.1142/s0219581x05003528.
Pełny tekst źródłaBocko, J., and P. Lengvarský. "Elastic modulus of defected graphene sheets." IOP Conference Series: Materials Science and Engineering 1199, no. 1 (2021): 012021. http://dx.doi.org/10.1088/1757-899x/1199/1/012021.
Pełny tekst źródłaBocko, Jozef, and Pavol Lengvarský. "Buckling analysis of graphene nanosheets by the finite element method." MATEC Web of Conferences 157 (2018): 06002. http://dx.doi.org/10.1051/matecconf/201815706002.
Pełny tekst źródłaYengejeh, Sadegh Imani, Seyedeh Alieh Kazemi, Oleksandr Ivasenko, and Andreas Öchsner. "Simulations of Graphene Sheets Based on the Finite Element Method and Density Functional Theory: Comparison of the Geometry Modeling under the Influence of Defects." Journal of Nano Research 47 (May 2017): 128–35. http://dx.doi.org/10.4028/www.scientific.net/jnanor.47.128.
Pełny tekst źródłaShi, Jiajia, Liu Chu, and Robin Braun. "A Kriging Surrogate Model for Uncertainty Analysis of Graphene Based on a Finite Element Method." International Journal of Molecular Sciences 20, no. 9 (2019): 2355. http://dx.doi.org/10.3390/ijms20092355.
Pełny tekst źródłaYang, Bo, and N. Vijayanand. "Multiscale Fracture in Peeling of Highly Oriented Pyrolytic Graphite." Key Engineering Materials 560 (July 2013): 71–86. http://dx.doi.org/10.4028/www.scientific.net/kem.560.71.
Pełny tekst źródłaLU, QIANG, and RUI HUANG. "NONLINEAR MECHANICS OF SINGLE-ATOMIC-LAYER GRAPHENE SHEETS." International Journal of Applied Mechanics 01, no. 03 (2009): 443–67. http://dx.doi.org/10.1142/s1758825109000228.
Pełny tekst źródłaChu, Liu, Jiajia Shi, and Shujun Ben. "Buckling Analysis of Vacancy-Defected Graphene Sheets by the Stochastic Finite Element Method." Materials 11, no. 9 (2018): 1545. http://dx.doi.org/10.3390/ma11091545.
Pełny tekst źródłaLópez-Urías, F., J. A. Rodríguez-Manzo, E. Muñoz-Sandoval, M. Terrones, and H. Terrones. "Magnetic response in finite carbon graphene sheets and nanotubes." Optical Materials 29, no. 1 (2006): 110–15. http://dx.doi.org/10.1016/j.optmat.2006.03.025.
Pełny tekst źródłaKhandoker, N., S. Islam, and Y. S. Hiung. "Finite element simulation of mechanical properties of graphene sheets." IOP Conference Series: Materials Science and Engineering 206 (June 2017): 012057. http://dx.doi.org/10.1088/1757-899x/206/1/012057.
Pełny tekst źródłaWang, Jicheng, Baojie Tang, Xiushan Xia, and Shutian Liu. "Active Multiple Plasmon-Induced Transparency with Graphene Sheets Resonators in Mid-Infrared Frequencies." Journal of Nanomaterials 2016 (2016): 1–8. http://dx.doi.org/10.1155/2016/3678578.
Pełny tekst źródłaMotamedi, Mohsen, Amirhossein Naghdi, Ayesha Sohail, and Zhiwu Li. "Effect of elastic foundation on vibrational behavior of graphene based on first-order shear deformation theory." Advances in Mechanical Engineering 10, no. 12 (2018): 168781401881462. http://dx.doi.org/10.1177/1687814018814624.
Pełny tekst źródłaChu, Liu, Jiajia Shi, Eduardo Souza de Cursi, Xunqian Xu, Yazhou Qin, and Hongliang Xiang. "Monte Carlo-Based Finite Element Method for the Study of Randomly Distributed Vacancy Defects in Graphene Sheets." Journal of Nanomaterials 2018 (October 10, 2018): 1–12. http://dx.doi.org/10.1155/2018/3037063.
Pełny tekst źródłaXu, Wei, Lifeng Wang, and Jingnong Jiang. "Strain Gradient Finite Element Analysis on the Vibration of Double-Layered Graphene Sheets." International Journal of Computational Methods 13, no. 03 (2016): 1650011. http://dx.doi.org/10.1142/s0219876216500110.
Pełny tekst źródłaRamezanali, M. R., M. M. Vazifeh, Reza Asgari, Marco Polini, and A. H. MacDonald. "Finite-temperature screening and the specific heat of doped graphene sheets." Journal of Physics A: Mathematical and Theoretical 42, no. 21 (2009): 214015. http://dx.doi.org/10.1088/1751-8113/42/21/214015.
Pełny tekst źródłaHonarmand, M., and M. Moradi. "Crack propagation of nano-graphene sheets by scaled boundary finite element." Materials Research Express 6, no. 2 (2018): 025038. http://dx.doi.org/10.1088/2053-1591/aaee23.
Pełny tekst źródłaPapadimopoulos, Athanasios N., Stamatios A. Amanatiadis, Nikolaos V. Kantartzis, Theodoros T. Zygiridis, and Theodoros D. Tsiboukis. "Rigorous time-domain analysis of statistically oriented graphene sheet fluctuations." COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 36, no. 5 (2017): 1351–63. http://dx.doi.org/10.1108/compel-02-2017-0105.
Pełny tekst źródłaYang, Jianfeng, Jingjing Yang, and Ming Huang. "Single-mode cylindrical graphene plasmon waveguide." Modern Physics Letters B 30, no. 22 (2016): 1650268. http://dx.doi.org/10.1142/s0217984916502687.
Pełny tekst źródłaLi, Xin-Liang, and Jian-Gang Guo. "Theoretical Investigation on Failure Strength and Fracture Toughness of Precracked Single-Layer Graphene Sheets." Journal of Nanomaterials 2019 (February 14, 2019): 1–11. http://dx.doi.org/10.1155/2019/9734807.
Pełny tekst źródłaVan Londersele, Arne, Daniël De Zutter, and Dries Vande Ginste. "Full-Wave Analysis of the Shielding Effectiveness of Thin Graphene Sheets with the 3D Unidirectionally Collocated HIE-FDTD Method." International Journal of Antennas and Propagation 2017 (2017): 1–8. http://dx.doi.org/10.1155/2017/5860854.
Pełny tekst źródłaTsiamaki, Androniki S., and Nick K. Anifantis. "Finite Element Simulation of the Thermo-mechanical Response of Graphene Reinforced Nanocomposites." MATEC Web of Conferences 188 (2018): 01016. http://dx.doi.org/10.1051/matecconf/201818801016.
Pełny tekst źródłaPetrushenko, Igor K. "[2+1] Cycloaddition of dichlorocarbene to finite-size graphene sheets: DFT study." Monatshefte für Chemie - Chemical Monthly 145, no. 6 (2014): 891–96. http://dx.doi.org/10.1007/s00706-014-1181-1.
Pełny tekst źródłaAnsari, R., R. Rajabiehfard, and B. Arash. "Nonlocal finite element model for vibrations of embedded multi-layered graphene sheets." Computational Materials Science 49, no. 4 (2010): 831–38. http://dx.doi.org/10.1016/j.commatsci.2010.06.032.
Pełny tekst źródłaJaroniek, Mieczysław, Leszek Czechowski, Łukasz Kaczmarek, Tomasz Warga, and Tomasz Kubiak. "A New Approach of Mathematical Analysis of Structure of Graphene as a Potential Material for Composites." Materials 12, no. 23 (2019): 3918. http://dx.doi.org/10.3390/ma12233918.
Pełny tekst źródłaLi, Xinliang, and Jiangang Guo. "Numerical Investigation of the Fracture Properties of Pre-Cracked Monocrystalline/Polycrystalline Graphene Sheets." Materials 12, no. 2 (2019): 263. http://dx.doi.org/10.3390/ma12020263.
Pełny tekst źródłaMakwana, Manisha, Ajay M. Patel, Ankit D. Oza, et al. "Effect of Mass on the Dynamic Characteristics of Single- and Double-Layered Graphene-Based Nano Resonators." Materials 15, no. 16 (2022): 5551. http://dx.doi.org/10.3390/ma15165551.
Pełny tekst źródłaGe, Yong, Hong-Xiang Sun, Yi-Jun Guan, and Gan-He Zeng. "Finite temperature effect on mechanical properties of graphene sheets with various grain boundaries." Chinese Physics B 25, no. 6 (2016): 066104. http://dx.doi.org/10.1088/1674-1056/25/6/066104.
Pełny tekst źródłaArash, B., Q. Wang, and K. M. Liew. "Wave propagation in graphene sheets with nonlocal elastic theory via finite element formulation." Computer Methods in Applied Mechanics and Engineering 223-224 (June 2012): 1–9. http://dx.doi.org/10.1016/j.cma.2012.02.002.
Pełny tekst źródłaLinh, Dang Khanh, and Nguyen Quoc Khanh. "Charged impurity scattering in bilayer-graphene double layers." International Journal of Modern Physics B 34, no. 27 (2020): 2050254. http://dx.doi.org/10.1142/s0217979220502549.
Pełny tekst źródłaLv, Ruicong, Haichang Guo, Lei Kang, et al. "Thermally Conductive and Electrically Insulating Epoxy Composites Filled with Network-like Alumina In Situ Coated Graphene." Nanomaterials 13, no. 15 (2023): 2243. http://dx.doi.org/10.3390/nano13152243.
Pełny tekst źródłaGenoese, Alessandra, Andrea Genoese, Nicola Luigi Rizzi, and Ginevra Salerno. "On the in-plane failure and post-failure behaviour of pristine and perforated single-layer graphene sheets." Mathematics and Mechanics of Solids 24, no. 11 (2019): 3418–43. http://dx.doi.org/10.1177/1081286519833129.
Pełny tekst źródłaLi, Bao Long, Li Jun Zhou, and Jian Gao Guo. "Influence of Defects on Elastic Buckling Properties of Single-Layered Graphene Sheets." Key Engineering Materials 636 (December 2014): 11–14. http://dx.doi.org/10.4028/www.scientific.net/kem.636.11.
Pełny tekst źródłaSoleimani, Ahmad, Mohammad Hasan Naei, and Mahmoud Mosavi Mashhadi. "Buckling analysis of graphene sheets using nonlocal isogeometric finite element method for NEMS applications." Microsystem Technologies 23, no. 7 (2016): 2859–71. http://dx.doi.org/10.1007/s00542-016-3098-6.
Pełny tekst źródłaHajian, M., and M. Moradi. "Stochastic fracture analysis of cracked nano-graphene sheets by scaled boundary finite element method." Engineering Analysis with Boundary Elements 98 (January 2019): 54–63. http://dx.doi.org/10.1016/j.enganabound.2018.10.005.
Pełny tekst źródłaChu, Liu, Jiajia Shi, and Eduardo Souza de Cursi. "Vibration Analysis of Vacancy Defected Graphene Sheets by Monte Carlo Based Finite Element Method." Nanomaterials 8, no. 7 (2018): 489. http://dx.doi.org/10.3390/nano8070489.
Pełny tekst źródłaRouhi, S., and R. Ansari. "Atomistic finite element model for axial buckling and vibration analysis of single-layered graphene sheets." Physica E: Low-dimensional Systems and Nanostructures 44, no. 4 (2012): 764–72. http://dx.doi.org/10.1016/j.physe.2011.11.020.
Pełny tekst źródłaKim, Moonhong, and Seyoung Im. "A plate model for multilayer graphene sheets and its finite element implementation via corotational formulation." Computer Methods in Applied Mechanics and Engineering 325 (October 2017): 102–38. http://dx.doi.org/10.1016/j.cma.2017.06.034.
Pełny tekst źródłaTorres, Ana E., Reyes Flores, Lioudmila Fomina, and Serguei Fomine. "Electronic structure of boron-doped finite graphene sheets: unrestricted DFT and complete active space calculations." Molecular Simulation 42, no. 18 (2016): 1512–18. http://dx.doi.org/10.1080/08927022.2016.1214955.
Pełny tekst źródłaLi, Jichun, Li Zhu, and Todd Arbogast. "A new time-domain finite element method for simulating surface plasmon polaritons on graphene sheets." Computers & Mathematics with Applications 142 (July 2023): 268–82. http://dx.doi.org/10.1016/j.camwa.2023.05.003.
Pełny tekst źródłaMalakouti, M., and A. Montazeri. "Nanomechanics analysis of perfect and defected graphene sheets via a novel atomic-scale finite element method." Superlattices and Microstructures 94 (June 2016): 1–12. http://dx.doi.org/10.1016/j.spmi.2016.03.049.
Pełny tekst źródłaJiang, Zonghuiyi, Rong Lin, Peishi Yu, Yu Liu, Ning Wei, and Junhua Zhao. "The chirality-dependent fracture properties of single-layer graphene sheets: Molecular dynamics simulations and finite element method." Journal of Applied Physics 122, no. 2 (2017): 025110. http://dx.doi.org/10.1063/1.4993176.
Pełny tekst źródłaAnjomshoa, Amin, Ali Reza Shahidi, Behrooz Hassani, and Emad Jomehzadeh. "Finite element buckling analysis of multi-layered graphene sheets on elastic substrate based on nonlocal elasticity theory." Applied Mathematical Modelling 38, no. 24 (2014): 5934–55. http://dx.doi.org/10.1016/j.apm.2014.03.036.
Pełny tekst źródłaParashar, Avinash, and Pierre Mertiny. "Finite Element Analysis to Study the Effect of Dimensional and Geometrical Parameters on the Stability of Graphene Sheets." Journal of Computational and Theoretical Nanoscience 10, no. 2 (2013): 292–98. http://dx.doi.org/10.1166/jctn.2013.2694.
Pełny tekst źródłaAnsari, R., S. Rouhi, and A. Shahnazari. "Investigation of the vibrational characteristics of double-walled carbon nanotubes/double-layered graphene sheets using the finite element method." Mechanics of Advanced Materials and Structures 25, no. 3 (2017): 253–65. http://dx.doi.org/10.1080/15376494.2016.1255813.
Pełny tekst źródła