Artykuły w czasopismach na temat „Finite Graphene Sheets”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Finite Graphene Sheets”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Ahmadi, M., R. Ansari i S. Rouhi. "Investigating the thermal conductivity of concrete/graphene nanocomposite by a multi-scale modeling approach". International Journal of Modern Physics B 32, nr 14 (5.06.2018): 1850171. http://dx.doi.org/10.1142/s0217979218501710.
Pełny tekst źródłaZhen, Cai Ru, Yu Li Chen, Chuan Qiao i Qi Jun Liu. "Atomistic Simulation on Buckling Behavior of Monolayer Graphene". Advanced Materials Research 1095 (marzec 2015): 35–38. http://dx.doi.org/10.4028/www.scientific.net/amr.1095.35.
Pełny tekst źródłaPetrushenko, Igor K. "DFT Study on Adiabatic and Vertical Ionization Potentials of Graphene Sheets". Advances in Materials Science and Engineering 2015 (2015): 1–7. http://dx.doi.org/10.1155/2015/262513.
Pełny tekst źródłaKazemi, Seyedeh Alieh, Sadegh Imani Yengejeh i Andreas Öchsner. "On the Modeling of Eigenmodes and Eigenfrequencies of Carbon Graphene Sheets under the Influence of Vacancy Defects". Journal of Nano Research 38 (styczeń 2016): 101–6. http://dx.doi.org/10.4028/www.scientific.net/jnanor.38.101.
Pełny tekst źródłaWang, Xiunan, Yi Liu, Jingcheng Xu, Shengjuan Li, Fada Zhang, Qian Ye, Xiao Zhai i Xinluo Zhao. "Molecular Dynamics Study of Stability and Diffusion of Graphene-Based Drug Delivery Systems". Journal of Nanomaterials 2015 (2015): 1–14. http://dx.doi.org/10.1155/2015/872079.
Pełny tekst źródłaDobrescu, Oana-Ancuta, i M. Apostol. "Tight-binding approximation for bulk and edge electronic states in graphene". Canadian Journal of Physics 93, nr 5 (maj 2015): 580–84. http://dx.doi.org/10.1139/cjp-2014-0313.
Pełny tekst źródłaREDDY, C. D., S. RAJENDRAN i K. M. LIEW. "EQUIVALENT CONTINUUM MODELING OF GRAPHENE SHEETS". International Journal of Nanoscience 04, nr 04 (sierpień 2005): 631–36. http://dx.doi.org/10.1142/s0219581x05003528.
Pełny tekst źródłaBocko, J., i P. Lengvarský. "Elastic modulus of defected graphene sheets". IOP Conference Series: Materials Science and Engineering 1199, nr 1 (1.11.2021): 012021. http://dx.doi.org/10.1088/1757-899x/1199/1/012021.
Pełny tekst źródłaBocko, Jozef, i Pavol Lengvarský. "Buckling analysis of graphene nanosheets by the finite element method". MATEC Web of Conferences 157 (2018): 06002. http://dx.doi.org/10.1051/matecconf/201815706002.
Pełny tekst źródłaYengejeh, Sadegh Imani, Seyedeh Alieh Kazemi, Oleksandr Ivasenko i Andreas Öchsner. "Simulations of Graphene Sheets Based on the Finite Element Method and Density Functional Theory: Comparison of the Geometry Modeling under the Influence of Defects". Journal of Nano Research 47 (maj 2017): 128–35. http://dx.doi.org/10.4028/www.scientific.net/jnanor.47.128.
Pełny tekst źródłaShi, Jiajia, Liu Chu i Robin Braun. "A Kriging Surrogate Model for Uncertainty Analysis of Graphene Based on a Finite Element Method". International Journal of Molecular Sciences 20, nr 9 (13.05.2019): 2355. http://dx.doi.org/10.3390/ijms20092355.
Pełny tekst źródłaYang, Bo, i N. Vijayanand. "Multiscale Fracture in Peeling of Highly Oriented Pyrolytic Graphite". Key Engineering Materials 560 (lipiec 2013): 71–86. http://dx.doi.org/10.4028/www.scientific.net/kem.560.71.
Pełny tekst źródłaLU, QIANG, i RUI HUANG. "NONLINEAR MECHANICS OF SINGLE-ATOMIC-LAYER GRAPHENE SHEETS". International Journal of Applied Mechanics 01, nr 03 (wrzesień 2009): 443–67. http://dx.doi.org/10.1142/s1758825109000228.
Pełny tekst źródłaChu, Liu, Jiajia Shi i Shujun Ben. "Buckling Analysis of Vacancy-Defected Graphene Sheets by the Stochastic Finite Element Method". Materials 11, nr 9 (27.08.2018): 1545. http://dx.doi.org/10.3390/ma11091545.
Pełny tekst źródłaLópez-Urías, F., J. A. Rodríguez-Manzo, E. Muñoz-Sandoval, M. Terrones i H. Terrones. "Magnetic response in finite carbon graphene sheets and nanotubes". Optical Materials 29, nr 1 (październik 2006): 110–15. http://dx.doi.org/10.1016/j.optmat.2006.03.025.
Pełny tekst źródłaKhandoker, N., S. Islam i Y. S. Hiung. "Finite element simulation of mechanical properties of graphene sheets". IOP Conference Series: Materials Science and Engineering 206 (czerwiec 2017): 012057. http://dx.doi.org/10.1088/1757-899x/206/1/012057.
Pełny tekst źródłaWang, Jicheng, Baojie Tang, Xiushan Xia i Shutian Liu. "Active Multiple Plasmon-Induced Transparency with Graphene Sheets Resonators in Mid-Infrared Frequencies". Journal of Nanomaterials 2016 (2016): 1–8. http://dx.doi.org/10.1155/2016/3678578.
Pełny tekst źródłaMotamedi, Mohsen, Amirhossein Naghdi, Ayesha Sohail i Zhiwu Li. "Effect of elastic foundation on vibrational behavior of graphene based on first-order shear deformation theory". Advances in Mechanical Engineering 10, nr 12 (grudzień 2018): 168781401881462. http://dx.doi.org/10.1177/1687814018814624.
Pełny tekst źródłaChu, Liu, Jiajia Shi, Eduardo Souza de Cursi, Xunqian Xu, Yazhou Qin i Hongliang Xiang. "Monte Carlo-Based Finite Element Method for the Study of Randomly Distributed Vacancy Defects in Graphene Sheets". Journal of Nanomaterials 2018 (10.10.2018): 1–12. http://dx.doi.org/10.1155/2018/3037063.
Pełny tekst źródłaXu, Wei, Lifeng Wang i Jingnong Jiang. "Strain Gradient Finite Element Analysis on the Vibration of Double-Layered Graphene Sheets". International Journal of Computational Methods 13, nr 03 (31.05.2016): 1650011. http://dx.doi.org/10.1142/s0219876216500110.
Pełny tekst źródłaRamezanali, M. R., M. M. Vazifeh, Reza Asgari, Marco Polini i A. H. MacDonald. "Finite-temperature screening and the specific heat of doped graphene sheets". Journal of Physics A: Mathematical and Theoretical 42, nr 21 (8.05.2009): 214015. http://dx.doi.org/10.1088/1751-8113/42/21/214015.
Pełny tekst źródłaHonarmand, M., i M. Moradi. "Crack propagation of nano-graphene sheets by scaled boundary finite element". Materials Research Express 6, nr 2 (21.11.2018): 025038. http://dx.doi.org/10.1088/2053-1591/aaee23.
Pełny tekst źródłaPapadimopoulos, Athanasios N., Stamatios A. Amanatiadis, Nikolaos V. Kantartzis, Theodoros T. Zygiridis i Theodoros D. Tsiboukis. "Rigorous time-domain analysis of statistically oriented graphene sheet fluctuations". COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 36, nr 5 (4.09.2017): 1351–63. http://dx.doi.org/10.1108/compel-02-2017-0105.
Pełny tekst źródłaYang, Jianfeng, Jingjing Yang i Ming Huang. "Single-mode cylindrical graphene plasmon waveguide". Modern Physics Letters B 30, nr 22 (20.08.2016): 1650268. http://dx.doi.org/10.1142/s0217984916502687.
Pełny tekst źródłaLi, Xin-Liang, i Jian-Gang Guo. "Theoretical Investigation on Failure Strength and Fracture Toughness of Precracked Single-Layer Graphene Sheets". Journal of Nanomaterials 2019 (14.02.2019): 1–11. http://dx.doi.org/10.1155/2019/9734807.
Pełny tekst źródłaVan Londersele, Arne, Daniël De Zutter i Dries Vande Ginste. "Full-Wave Analysis of the Shielding Effectiveness of Thin Graphene Sheets with the 3D Unidirectionally Collocated HIE-FDTD Method". International Journal of Antennas and Propagation 2017 (2017): 1–8. http://dx.doi.org/10.1155/2017/5860854.
Pełny tekst źródłaTsiamaki, Androniki S., i Nick K. Anifantis. "Finite Element Simulation of the Thermo-mechanical Response of Graphene Reinforced Nanocomposites". MATEC Web of Conferences 188 (2018): 01016. http://dx.doi.org/10.1051/matecconf/201818801016.
Pełny tekst źródłaPetrushenko, Igor K. "[2+1] Cycloaddition of dichlorocarbene to finite-size graphene sheets: DFT study". Monatshefte für Chemie - Chemical Monthly 145, nr 6 (8.04.2014): 891–96. http://dx.doi.org/10.1007/s00706-014-1181-1.
Pełny tekst źródłaAnsari, R., R. Rajabiehfard i B. Arash. "Nonlocal finite element model for vibrations of embedded multi-layered graphene sheets". Computational Materials Science 49, nr 4 (październik 2010): 831–38. http://dx.doi.org/10.1016/j.commatsci.2010.06.032.
Pełny tekst źródłaJaroniek, Mieczysław, Leszek Czechowski, Łukasz Kaczmarek, Tomasz Warga i Tomasz Kubiak. "A New Approach of Mathematical Analysis of Structure of Graphene as a Potential Material for Composites". Materials 12, nr 23 (27.11.2019): 3918. http://dx.doi.org/10.3390/ma12233918.
Pełny tekst źródłaLi, Xinliang, i Jiangang Guo. "Numerical Investigation of the Fracture Properties of Pre-Cracked Monocrystalline/Polycrystalline Graphene Sheets". Materials 12, nr 2 (15.01.2019): 263. http://dx.doi.org/10.3390/ma12020263.
Pełny tekst źródłaMakwana, Manisha, Ajay M. Patel, Ankit D. Oza, Chander Prakash, Lovi Raj Gupta, Nikolai Ivanovich Vatin i Saurav Dixit. "Effect of Mass on the Dynamic Characteristics of Single- and Double-Layered Graphene-Based Nano Resonators". Materials 15, nr 16 (12.08.2022): 5551. http://dx.doi.org/10.3390/ma15165551.
Pełny tekst źródłaGe, Yong, Hong-Xiang Sun, Yi-Jun Guan i Gan-He Zeng. "Finite temperature effect on mechanical properties of graphene sheets with various grain boundaries". Chinese Physics B 25, nr 6 (czerwiec 2016): 066104. http://dx.doi.org/10.1088/1674-1056/25/6/066104.
Pełny tekst źródłaArash, B., Q. Wang i K. M. Liew. "Wave propagation in graphene sheets with nonlocal elastic theory via finite element formulation". Computer Methods in Applied Mechanics and Engineering 223-224 (czerwiec 2012): 1–9. http://dx.doi.org/10.1016/j.cma.2012.02.002.
Pełny tekst źródłaLinh, Dang Khanh, i Nguyen Quoc Khanh. "Charged impurity scattering in bilayer-graphene double layers". International Journal of Modern Physics B 34, nr 27 (6.10.2020): 2050254. http://dx.doi.org/10.1142/s0217979220502549.
Pełny tekst źródłaLv, Ruicong, Haichang Guo, Lei Kang, Akbar Bashir, Liucheng Ren, Hongyu Niu i Shulin Bai. "Thermally Conductive and Electrically Insulating Epoxy Composites Filled with Network-like Alumina In Situ Coated Graphene". Nanomaterials 13, nr 15 (3.08.2023): 2243. http://dx.doi.org/10.3390/nano13152243.
Pełny tekst źródłaGenoese, Alessandra, Andrea Genoese, Nicola Luigi Rizzi i Ginevra Salerno. "On the in-plane failure and post-failure behaviour of pristine and perforated single-layer graphene sheets". Mathematics and Mechanics of Solids 24, nr 11 (16.05.2019): 3418–43. http://dx.doi.org/10.1177/1081286519833129.
Pełny tekst źródłaLi, Bao Long, Li Jun Zhou i Jian Gao Guo. "Influence of Defects on Elastic Buckling Properties of Single-Layered Graphene Sheets". Key Engineering Materials 636 (grudzień 2014): 11–14. http://dx.doi.org/10.4028/www.scientific.net/kem.636.11.
Pełny tekst źródłaSoleimani, Ahmad, Mohammad Hasan Naei i Mahmoud Mosavi Mashhadi. "Buckling analysis of graphene sheets using nonlocal isogeometric finite element method for NEMS applications". Microsystem Technologies 23, nr 7 (9.08.2016): 2859–71. http://dx.doi.org/10.1007/s00542-016-3098-6.
Pełny tekst źródłaHajian, M., i M. Moradi. "Stochastic fracture analysis of cracked nano-graphene sheets by scaled boundary finite element method". Engineering Analysis with Boundary Elements 98 (styczeń 2019): 54–63. http://dx.doi.org/10.1016/j.enganabound.2018.10.005.
Pełny tekst źródłaChu, Liu, Jiajia Shi i Eduardo Souza de Cursi. "Vibration Analysis of Vacancy Defected Graphene Sheets by Monte Carlo Based Finite Element Method". Nanomaterials 8, nr 7 (2.07.2018): 489. http://dx.doi.org/10.3390/nano8070489.
Pełny tekst źródłaRouhi, S., i R. Ansari. "Atomistic finite element model for axial buckling and vibration analysis of single-layered graphene sheets". Physica E: Low-dimensional Systems and Nanostructures 44, nr 4 (styczeń 2012): 764–72. http://dx.doi.org/10.1016/j.physe.2011.11.020.
Pełny tekst źródłaKim, Moonhong, i Seyoung Im. "A plate model for multilayer graphene sheets and its finite element implementation via corotational formulation". Computer Methods in Applied Mechanics and Engineering 325 (październik 2017): 102–38. http://dx.doi.org/10.1016/j.cma.2017.06.034.
Pełny tekst źródłaTorres, Ana E., Reyes Flores, Lioudmila Fomina i Serguei Fomine. "Electronic structure of boron-doped finite graphene sheets: unrestricted DFT and complete active space calculations". Molecular Simulation 42, nr 18 (19.09.2016): 1512–18. http://dx.doi.org/10.1080/08927022.2016.1214955.
Pełny tekst źródłaLi, Jichun, Li Zhu i Todd Arbogast. "A new time-domain finite element method for simulating surface plasmon polaritons on graphene sheets". Computers & Mathematics with Applications 142 (lipiec 2023): 268–82. http://dx.doi.org/10.1016/j.camwa.2023.05.003.
Pełny tekst źródłaMalakouti, M., i A. Montazeri. "Nanomechanics analysis of perfect and defected graphene sheets via a novel atomic-scale finite element method". Superlattices and Microstructures 94 (czerwiec 2016): 1–12. http://dx.doi.org/10.1016/j.spmi.2016.03.049.
Pełny tekst źródłaJiang, Zonghuiyi, Rong Lin, Peishi Yu, Yu Liu, Ning Wei i Junhua Zhao. "The chirality-dependent fracture properties of single-layer graphene sheets: Molecular dynamics simulations and finite element method". Journal of Applied Physics 122, nr 2 (14.07.2017): 025110. http://dx.doi.org/10.1063/1.4993176.
Pełny tekst źródłaAnjomshoa, Amin, Ali Reza Shahidi, Behrooz Hassani i Emad Jomehzadeh. "Finite element buckling analysis of multi-layered graphene sheets on elastic substrate based on nonlocal elasticity theory". Applied Mathematical Modelling 38, nr 24 (grudzień 2014): 5934–55. http://dx.doi.org/10.1016/j.apm.2014.03.036.
Pełny tekst źródłaParashar, Avinash, i Pierre Mertiny. "Finite Element Analysis to Study the Effect of Dimensional and Geometrical Parameters on the Stability of Graphene Sheets". Journal of Computational and Theoretical Nanoscience 10, nr 2 (1.02.2013): 292–98. http://dx.doi.org/10.1166/jctn.2013.2694.
Pełny tekst źródłaAnsari, R., S. Rouhi i A. Shahnazari. "Investigation of the vibrational characteristics of double-walled carbon nanotubes/double-layered graphene sheets using the finite element method". Mechanics of Advanced Materials and Structures 25, nr 3 (28.02.2017): 253–65. http://dx.doi.org/10.1080/15376494.2016.1255813.
Pełny tekst źródła