Artykuły w czasopismach na temat „Finite Element”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Finite Element.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Finite Element”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Ženíšek, Alexander. "Finite element variational crimes in the case of semiregular elements". Applications of Mathematics 41, nr 5 (1996): 367–98. http://dx.doi.org/10.21136/am.1996.134332.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Kim, Hyun-Gyu. "CM-KR-1 Interface elements for coupling independently modeled finite element domains". Proceedings of Mechanical Engineering Congress, Japan 2012 (2012): _CM—KR—1–1—_CM—KR—1–5. http://dx.doi.org/10.1299/jsmemecj.2012._cm-kr-1-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Haukaas, T., i P. Gardoni. "Model Uncertainty in Finite-Element Analysis: Bayesian Finite Elements". Journal of Engineering Mechanics 137, nr 8 (sierpień 2011): 519–26. http://dx.doi.org/10.1061/(asce)em.1943-7889.0000253.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Mackerle, Jaroslav. "Finite element analysis of machine elements". Engineering Computations 16, nr 6 (wrzesień 1999): 677–748. http://dx.doi.org/10.1108/02644409910286429.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Kožar, Ivica, i Adnan Ibrahimbegović. "Finite element formulation of the finite rotation solid element". Finite Elements in Analysis and Design 20, nr 2 (czerwiec 1995): 101–26. http://dx.doi.org/10.1016/0168-874x(95)00014-k.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Rajput, Sunil G. "Finite Element Analysis of Twin Screw Extruder". Indian Journal of Applied Research 3, nr 6 (1.10.2011): 205–8. http://dx.doi.org/10.15373/2249555x/june2013/68.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Hayashi, Masa, Motonao Yamanaka, Hiroshi Kasebe i Toshiaki Satoh. "Efficient Hierarchical Elements in Finite Element Analysis." Doboku Gakkai Ronbunshu, nr 591 (1998): 71–84. http://dx.doi.org/10.2208/jscej.1998.591_71.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Vieux, Baxter E., Vincent F. Bralts, Larry J. Segerlind i Roger B. Wallace. "Finite Element Watershed Modeling: One‐Dimensional Elements". Journal of Water Resources Planning and Management 116, nr 6 (listopad 1990): 803–19. http://dx.doi.org/10.1061/(asce)0733-9496(1990)116:6(803).

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Savadatti, Siddharth, i Murthy N. Guddati. "A finite element alternative to infinite elements". Computer Methods in Applied Mechanics and Engineering 199, nr 33-36 (lipiec 2010): 2204–23. http://dx.doi.org/10.1016/j.cma.2010.03.018.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Matveev, Aleksandr. "Generating finite element method in constructing complex-shaped multigrid finite elements". EPJ Web of Conferences 221 (2019): 01029. http://dx.doi.org/10.1051/epjconf/201922101029.

Pełny tekst źródła
Streszczenie:
The calculations of three-dimensional composite bodies based on the finite element method with allowance for their structure and complex shape come down to constructing high-dimension discrete models. The dimension of discrete models can be effectively reduced by means of multigrid finite elements (MgFE). This paper proposes a generating finite element method for constructing two types of three-dimensional complex-shaped composite MgFE, which can be briefly described as follows. An MgFE domain of the first type is obtained by rotating a specified complex-shaped plane generating single-grid finite element (FE) around a specified axis at a given angle, and an MgFE domain of the second type is obtained by the parallel displacement of a generating FE in a specified direction at a given distance. This method allows designing MgFE with one characteristic dimension significantly larger (smaller) than the other two. The MgFE of the first type are applied to calculate composite shells of revolution and complex-shaped rings, and the MgFE of the second type are used to calculate composite cylindrical shells, complex-shaped plates and beams. The proposed MgFE are advantageous because they account for the inhomogeneous structure and complex shape of bodies and generate low-dimension discrete models and solutions with a small error.
Style APA, Harvard, Vancouver, ISO itp.
11

ICHIHASHI, Hidetomo, i Hitoshi FURUTA. "Finite Element Method". Journal of Japan Society for Fuzzy Theory and Systems 6, nr 2 (1994): 246–49. http://dx.doi.org/10.3156/jfuzzy.6.2_246.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

S., L. R., Barna Szabo i Ivo Babuska. "Finite Element Analysis." Mathematics of Computation 60, nr 201 (styczeń 1993): 432. http://dx.doi.org/10.2307/2153181.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Davis, Thomas G. "Finite‐Element Volumes". Journal of Surveying Engineering 120, nr 3 (sierpień 1994): 94–114. http://dx.doi.org/10.1061/(asce)0733-9453(1994)120:3(94).

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Williamson, M. P. "Finite-element analysis". Computer-Aided Engineering Journal 2, nr 2 (1985): 66. http://dx.doi.org/10.1049/cae.1985.0013.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Schaeffer, Harry G. "Finite element implementation". Finite Elements in Analysis and Design 24, nr 2 (grudzień 1996): 111–12. http://dx.doi.org/10.1016/s0168-874x(96)00034-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Perez, Mario Mourelle. "Finite element handbook". Engineering Analysis with Boundary Elements 8, nr 4 (sierpień 1991): 215–16. http://dx.doi.org/10.1016/0955-7997(91)90018-o.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Alonso Rodríguez, Ana, i Alberto Valli. "Finite element potentials". Applied Numerical Mathematics 95 (wrzesień 2015): 2–14. http://dx.doi.org/10.1016/j.apnum.2014.05.014.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

W., L. B., i H. R. Schwarz. "Finite Element Methods." Mathematics of Computation 56, nr 193 (styczeń 1991): 377. http://dx.doi.org/10.2307/2008549.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

KABE, KAZUYUKI. "Finite element analysis." NIPPON GOMU KYOKAISHI 62, nr 4 (1989): 204–14. http://dx.doi.org/10.2324/gomu.62.204.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Oden, J. "Finite element method". Scholarpedia 5, nr 5 (2010): 9836. http://dx.doi.org/10.4249/scholarpedia.9836.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Cortesani, Guido, i Rodica Toader. "Finite element approximation". Numerical Functional Analysis and Optimization 18, nr 9-10 (styczeń 1997): 921–40. http://dx.doi.org/10.1080/01630569708816801.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Warsa, James S. "A Continuous Finite Element-Based, Discontinuous Finite Element Method forSNTransport". Nuclear Science and Engineering 160, nr 3 (listopad 2008): 385–400. http://dx.doi.org/10.13182/nse160-385tn.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Berthaume, Michael A., Paul C. Dechow, Jose Iriarte-Diaz, Callum F. Ross, David S. Strait, Qian Wang i Ian R. Grosse. "Probabilistic finite element analysis of a craniofacial finite element model". Journal of Theoretical Biology 300 (maj 2012): 242–53. http://dx.doi.org/10.1016/j.jtbi.2012.01.031.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

В. В. Борисов i В. В. Сухов. "The method of synthesis of finite-element model of strengthened fuselage frames". MECHANICS OF GYROSCOPIC SYSTEMS, nr 26 (23.12.2013): 80–90. http://dx.doi.org/10.20535/0203-377126201330677.

Pełny tekst źródła
Streszczenie:
One of the main problems, which solved during the design of transport category aircraft, is problem of analysis of the stress distribution in the strengthened fuselage frames structure. Existing integral methods of stress analysis does not allow for the mutual influence of the deformation of a large number of elements. The most effective method of solving the problem of analysis of deformations influence on the stress distribution of structure is finite element method, which is a universal method for analyzing stress distribution arbitrary constructions.This article describes the features of the finite element model synthesis of the strengthened fuselage frames structure of the aircraft fuselage transport category. It is shown that the finite element model of strengthened frames can be synthesized by attaching additional finite element models of the reinforcing elements to the base finite element model which is built by algorithm which is developed for normal frame. For each reinforcing element developed a separate class of finite element model synthesis algorithm. The method of synthesis of finite element model of strengthened frame, which are described in this article, developed for object-oriented information technology implemented in an object-oriented data management system "SPACE".Finite-element models of the reinforcing elements are included in the finite element model of the fuselage box after the formation of a regular finite element model of the fuselage box. As the source data for the synthesis of finite element models of the reinforcing elements used the coordinates of the boundary sections nodes of existing finite element models of conventional frames.Reinforcing elements belong to the group of irregular structural elements that connect regular elements of the cross set with different elements that are not intended for the perception and transmission of loads. The only exceptions are the vertical amplification increasing the stiffness of frames in a direction parallel to the axis OY.Source data input for the synthesis of finite element models of the reinforcing elements can occur only through the individual user interfaces that supported by objects of the corresponding classes. Structure of user interfaces depends on the number and type of additional data that required for the synthesis of finite element models of the reinforcing elements. For example, for the synthesis of structures of finite element models of horizontal beams that support the floor of cargo cabin, you must specify the distance between the upper surface of the beam and the horizontal axis of the fuselage, as well as the height of the beam section. For the synthesis of the structure of the finite element model of vertical reinforcing element is enough to specify the distance between the its inner belt and the a vertical axis of symmetry of the fuselage.And in both cases you must to specify a reference to the basic finite element model, by selecting from a list of frame designations. List of frames, as well as links to objects containing the appropriate finite-element models, must be transmitted from an object which references to the level of decomposition, in which the general model of the fuselage box is created.Finite-element models of the reinforcing elements include two groups of nodes. The first group is taken from an array of nodes, which is transmitted from the base finite element model. The second group is formed by the synthesis algorithm of finite element model of the selected class reinforcing element. Therefore, the synthesis of finite element models of the reinforcing elements starts with the formation of their local model versions. On the basis of these models are formed temporary copies, which are transmitted to the general finite element model of the box. This should be considered when developing of data conversion algorithm of data copying from a local finite element model to the temporary copy.Based on this analysis, we can conclude that this method improves the quality of the design of the aircraft fuselage, increasing the amount of structure variant number and reduce the likelihood of errors.
Style APA, Harvard, Vancouver, ISO itp.
25

Zine Dine, Khadija, Naceur Achtaich i Mohamed Chagdali. "Mixed finite element-finite volume methods". Bulletin of the Belgian Mathematical Society - Simon Stevin 17, nr 3 (sierpień 2010): 385–410. http://dx.doi.org/10.36045/bbms/1284570729.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Kobus, Jacek. "Finite-difference versus finite-element methods". Chemical Physics Letters 202, nr 1-2 (1993): 7–12. http://dx.doi.org/10.1016/0009-2614(93)85342-l.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Al Hasan, NuhaHadiJasim. "Simulation of Connecting Rod Using Finite Element Analysis". International Journal of Innovative Research in Computer Science & Technology 6, nr 5 (wrzesień 2018): 113–16. http://dx.doi.org/10.21276/ijircst.2018.6.5.5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Hlavička, Rudolf. "Finite element solution of a hyperbolic-parabolic problem". Applications of Mathematics 39, nr 3 (1994): 215–39. http://dx.doi.org/10.21136/am.1994.134254.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Ahmed, Muhammed M., i Sarkawt A. Hasan. "Finite Element Analysis of Reinforced Concrete Deep Beams". Journal of Zankoy Sulaimani - Part A 4, nr 1 (5.09.2000): 51–68. http://dx.doi.org/10.17656/jzs.10065.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Gophane, Ishwar, Narayan Dharashivkar, Pramod Mulik i Prashant Patil. "Theoretical and Finite Element Analysis of Pressure Vessel". Indian Journal Of Science And Technology 17, nr 12 (20.03.2024): 1148–58. http://dx.doi.org/10.17485/ijst/v17i12.3272.

Pełny tekst źródła
Streszczenie:
Objectives: This study tests the vessel strength and performance of pressure vessel under Internal pressure, Nozzle loads, and Hydro-test using Ansys APDL, validating design alignment with ASME Section VIII following the Design by rule (Analytical) and Design by Analysis (FEA) accurate elastic analysis approach. Methods: This study employs ASME methods to validate vessel integrity under various loads. Strength is confirmed through analytical formulas and Finite Element Analysis (FEA) using ANSYS APDL, aligned with widely used ASME BPVC codes in the oil and gas industry. The FE model, utilizing hex elements, ensures result accuracy with a minimum of three elements across thickness. Boundary conditions are validated by comparing hoop stress in FEA with analytically calculated values. ASME's computationally efficient elastic analysis, employing a linear approach, includes stress linearization at discontinuity and non-discontinuity locations, verifying vessel design through analysis. Findings: Initial thicknesses for the shell and cone exceeded analytically calculated minimums, affirming vessel structural integrity through ASME's design by rule approach. Finite Element Analysis (FEA) stress analysis at critical points, such as nozzle junctions and other discontinuity areas, validates accuracy through hoop stress checks. Analysis of design and test load cases reveals stress categories well within ASME Sec VIII limits, confirming the vessel's safety and compliance with elastic stress analysis standards. Novelty: This method emerges as a reliable tool for vessel design, ensuring safety and ASME compliance, particularly beneficial for industries like oil and gas. It provides precise guidelines utilizing hex mesh, validates boundary conditions through hoop stress comparison, and comprehensively assesses stress in critical and non-critical zones through elastic stress analysis. Addressing common challenges identified in the literature review, this approach enhances the accuracy and reliability of pressure vessel designs in compliance with ASME standards for design and test loadings. Keywords: Pressure Vessels, Process Industries, Stress, Loads, Pressure, Thermal, Design Validation, ASME, FE analysis
Style APA, Harvard, Vancouver, ISO itp.
31

Xiang, Jiansheng, Antonio Munjiza i John-Paul Latham. "Finite strain, finite rotation quadratic tetrahedral element for the combined finite-discrete element method". International Journal for Numerical Methods in Engineering 79, nr 8 (20.08.2009): 946–78. http://dx.doi.org/10.1002/nme.2599.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Park, Ilwook, Taehyun Kim i Usik Lee. "Frequency Domain Spectral Element Model for the Vibration Analysis of a Thin Plate with Arbitrary Boundary Conditions". Mathematical Problems in Engineering 2016 (2016): 1–20. http://dx.doi.org/10.1155/2016/9475397.

Pełny tekst źródła
Streszczenie:
We propose a new spectral element model for finite rectangular plate elements with arbitrary boundary conditions. The new spectral element model is developed by modifying the boundary splitting method used in our previous study so that the four corner nodes of a finite rectangular plate element become active. Thus, the new spectral element model can be applied to any finite rectangular plate element with arbitrary boundary conditions, while the spectral element model introduced in the our previous study is valid only for finite rectangular plate elements with four fixed corner nodes. The new spectral element model can be used as a generic finite element model because it can be assembled in any plate direction. The accuracy and computational efficiency of the new spectral element model are validated by a comparison with exact solutions, solutions obtained by the standard finite element method, and solutions from the commercial finite element analysis package ANSYS.
Style APA, Harvard, Vancouver, ISO itp.
33

H. Schellenberg, reas, Yuli Huang i Stephen A. Mahin. "Structural Finite Element Software Coupling Using Adapter Elements". Computer Modeling in Engineering & Sciences 120, nr 3 (2019): 719–37. http://dx.doi.org/10.32604/cmes.2019.04835.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Sukhanova, V. A. "Finite element modeling of disc brake elements interaction". Construction, materials science, mechanical engineering, nr 106 (27.11.2018): 129–34. http://dx.doi.org/10.30838/p.cmm.2415.270818.129.242.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Ito, Yasuhisa, Hajime Igarashi, Kota Watanabe, Yosuke Iijima i Kenji Kawano. "Non-conforming finite element method with tetrahedral elements". International Journal of Applied Electromagnetics and Mechanics 39, nr 1-4 (5.09.2012): 739–45. http://dx.doi.org/10.3233/jae-2012-1537.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Milton, Kimball A., i Rhiju Das. "Finite-element lattice Hamiltonian matrix elements: Anharmonic oscillators". Letters in Mathematical Physics 36, nr 2 (luty 1996): 177–87. http://dx.doi.org/10.1007/bf00714380.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Zhou, B., M. L. Accorsi i J. W. Leonard. "Finite element formulation for modeling sliding cable elements". Computers & Structures 82, nr 2-3 (styczeń 2004): 271–80. http://dx.doi.org/10.1016/j.compstruc.2003.08.006.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Shirazi-Adl, A. "Nonlinear finite element analysis of wrapping uniaxial elements". Computers & Structures 32, nr 1 (styczeń 1989): 119–23. http://dx.doi.org/10.1016/0045-7949(89)90076-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Yamada, T., i K. Tani. "Finite element time domain method using hexahedral elements". IEEE Transactions on Magnetics 33, nr 2 (marzec 1997): 1476–79. http://dx.doi.org/10.1109/20.582539.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Kumar, Anil, Anil kumar chhotu, Ghausul Azam Ansari, Md Arman Ali, Abhishek kumar, Rajk ishor i Ashutosh kumar. "Finite Element Modelling of Corroded RC Flexural Elements". International Journal of Engineering Trends and Technology 71, nr 4 (25.04.2023): 462–73. http://dx.doi.org/10.14445/22315381/ijett-v71i4p239.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Li, Dan, Chunmei Wang i Junping Wang. "Curved elements in weak Galerkin finite element methods". Computers & Mathematics with Applications 153 (styczeń 2024): 20–32. http://dx.doi.org/10.1016/j.camwa.2023.11.013.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Bai, Run Bo, Fu Sheng Liu i Zong Mei Xu. "Element Selection and Meshing in Finite Element Contact Analysis". Advanced Materials Research 152-153 (październik 2010): 279–83. http://dx.doi.org/10.4028/www.scientific.net/amr.152-153.279.

Pełny tekst źródła
Streszczenie:
Contact problem, which exists widely in mechanical engineering, civil engineering, manufacturing engineering, etc., is an extremely complicated nonlinear problem. It is usually solved by the finite element method. Unlike with the traditional finite element method, it is necessary to set up contact elements for the contact analysis. In the different types of contact elements, the Goodman joint elements, which cover the surface of contacted bodies with zero thickness, are widely used. However, there are some debates on the characteristics of the attached elements of the Goodman joint elements. For that this paper studies the type, matching, and meshing of the attached elements. The results from this paper would be helpful for the finite element contact analysis.
Style APA, Harvard, Vancouver, ISO itp.
43

Tenek, L. T. "A Beam Finite Element Based on the Explicit Finite Element Method". International Review of Civil Engineering (IRECE) 6, nr 5 (30.09.2015): 124. http://dx.doi.org/10.15866/irece.v6i5.7977.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Zimmermann, Thomas. "The finite element method. Linear static and dynamic finite element analysis". Computer Methods in Applied Mechanics and Engineering 65, nr 2 (listopad 1987): 191. http://dx.doi.org/10.1016/0045-7825(87)90013-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Girault, Vivette, Shuyu Sun, Mary F. Wheeler i Ivan Yotov. "Coupling Discontinuous Galerkin and Mixed Finite Element Discretizations using Mortar Finite Elements". SIAM Journal on Numerical Analysis 46, nr 2 (styczeń 2008): 949–79. http://dx.doi.org/10.1137/060671620.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Цуканова, Екатерина, i Ekaterina Tsukanova. "Analysis of forced vibrations of frameworks by finite element method using dynamic finite element." Bulletin of Bryansk state technical university 2015, nr 2 (30.06.2015): 93–103. http://dx.doi.org/10.12737/22911.

Pełny tekst źródła
Streszczenie:
The analysis of forced vibrations of frameworks using finite element method is considered. The dynamic finite element, the base functions of which represent exact dynamic shapes of structural elements, is used for system discretization. The assessment of errors as a result of classic FEM application is given. The efficiency of application of dynamic finite element for analysis of forced vibrations and dynamic stress-deformed state of structures is shown.
Style APA, Harvard, Vancouver, ISO itp.
47

Attaelmanan, Abusamra, i Abdelhameed Ali. "Finite Element Analysis of Rectangular Beams". FES Journal of Engineering Sciences 8, nr 1 (6.03.2019): 1–7. http://dx.doi.org/10.52981/fjes.v8i1.11.

Pełny tekst źródła
Streszczenie:
This paper is concerned with the analysis of simply supported beam using MATLAB programming language and structural analysis program SAP2000. The beam was discretized into rectangular elements using finite element method. Three patterns of different dimensions and numbers of rectangular elements were used to verify the results of vertical displacements and stresses obtained by MATLAB and SAP 2000.The development of four noded isoparametric quadrilateral membrane elements in MATLAB programming language is presented. The membrane elements developed are plane strain condition. The considered patterns were analyzed as shell elements using SAP2000. A finite element program is also developed using MATLAB to check the accuracy of the developed elements.
Style APA, Harvard, Vancouver, ISO itp.
48

Bernard-Michel, G., C. Le Potier, A. Beccantini, S. Gounand i M. Chraibi. "The Andra Couplex 1 Test Case: Comparisons Between Finite-Element, Mixed Hybrid Finite Element and Finite Volume Element Discretizations". Computational Geosciences 8, nr 2 (2004): 187–201. http://dx.doi.org/10.1023/b:comg.0000035079.68284.49.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Li, Long-yuan, i Peter Bettess. "Adaptive Finite Element Methods: A Review". Applied Mechanics Reviews 50, nr 10 (1.10.1997): 581–91. http://dx.doi.org/10.1115/1.3101670.

Pełny tekst źródła
Streszczenie:
The adaptive finite element method (FEM) was developed in the early 1980s. The basic concept of adaptivity developed in the FEM is that, when a physical problem is analyzed using finite elements, there exist some discretization errors caused owing to the use of the finite element model. These errors are calculated in order to assess the accuracy of the solution obtained. If the errors are large, then the finite element model is refined through reducing the size of elements or increasing the order of interpolation functions. The new model is re-analyzed and the errors in the new model are recalculated. This procedure is continued until the calculated errors fall below the specified permissible values. The key features in the adaptive FEM are the estimation of discretization errors and the refinement of finite element models. This paper presents a brief review of the methods for error estimates and adaptive refinement processes applied to finite element calculations. The basic theories and principles of estimating finite element discretization errors and refining finite element models are presented. This review article contains 131 references.
Style APA, Harvard, Vancouver, ISO itp.
50

Xu, Shu Feng, Huai Fa Ma i Yong Fa Zhou. "Moving Grid Method for Simulating Crack Propagation". Applied Mechanics and Materials 405-408 (wrzesień 2013): 3173–77. http://dx.doi.org/10.4028/www.scientific.net/amm.405-408.3173.

Pełny tekst źródła
Streszczenie:
A moving grid nonlinear finite element method was used in this study to simulate crack propagation. The relevant elements were split along the direction of principal stress within the element and thus automatic optimization processing of local mesh was realized. We discussed the moving grid nonlinear finite element algorithm was proposed, compiled the corresponding script files based on the dedicated finite element language of Finite Element Program Generator (FEPG), and generate finite element source code programs according to the script files. Analyses show that the proposed moving grid finite element method is effective and feasible in crack propagation simulation.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii