Artykuły w czasopismach na temat „Finite element modelling”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Finite element modelling.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Finite element modelling”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Kumar, Anil, Anil kumar chhotu, Ghausul Azam Ansari, Md Arman Ali, Abhishek kumar, Rajk ishor i Ashutosh kumar. "Finite Element Modelling of Corroded RC Flexural Elements". International Journal of Engineering Trends and Technology 71, nr 4 (25.04.2023): 462–73. http://dx.doi.org/10.14445/22315381/ijett-v71i4p239.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Merodo, José Antonio Fernandez, i Manuel Pastor. "Finite Element Modelling of Landslides". Revue Française de Génie Civil 6, nr 6 (styczeń 2002): 1193–212. http://dx.doi.org/10.1080/12795119.2002.9692739.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Ridley, P. H. W., G. W. Roberts, M. A. Wongsam i R. W. Chantrell. "Finite element modelling of nanoelements". Journal of Magnetism and Magnetic Materials 193, nr 1-3 (marzec 1999): 423–26. http://dx.doi.org/10.1016/s0304-8853(98)00467-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Shinwari, M. W., M. J. Deen i P. R. Selvaganapathy. "Finite-Element Modelling of Biotransistors". Nanoscale Research Letters 5, nr 3 (19.01.2010): 494–500. http://dx.doi.org/10.1007/s11671-009-9522-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Carey, Graham F. "Parallelism in finite element modelling". Communications in Applied Numerical Methods 2, nr 3 (maj 1986): 281–87. http://dx.doi.org/10.1002/cnm.1630020309.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Fernández Ruiz, M., G. Argirova i A. Muttoni. "How simple can nonlinear finite element modelling be for structural concrete?" Informes de la Construcción 66, Extra-1 (30.12.2014): m013. http://dx.doi.org/10.3989/ic.13.085.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Kukiełka, Leon, i Krzysztof Kukiełka. "Modelling and analysis of the technological processes using finite element method". Mechanik, nr 3 (marzec 2015): 195/317–195/340. http://dx.doi.org/10.17814/mechanik.2015.3.149.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Kushwaha, R. L. "FINITE ELEMENT MODELLING OF TILLAGE TOOL DESIGN". Transactions of the Canadian Society for Mechanical Engineering 17, nr 2 (czerwiec 1993): 257–69. http://dx.doi.org/10.1139/tcsme-1993-0016.

Pełny tekst źródła
Streszczenie:
A non-linear finite element model was developed for three dimensional soil cutting by tillage tools. A hyperbolic constitutive relation for soil was used in the model. Analysis was carried out to simulate soil cutting with rectangular flat and triangular tillage blades at different rake angles and with curved blades. Interface elements were used to model the adhesion and the friction between soil and blade surface. Soil forces obtained from the finite element model for the straight blades were verified with the results from laboratory tillage tests in the soil bin. The finite element model predicted draft force accurately for both tillage tools. Results indicated that the draft was a function of rake angle, tool shape and the curvature.
Style APA, Harvard, Vancouver, ISO itp.
9

Moskvichev, Egor. "Distribution of material properties in finite element models of inhomogeneous elements of structures". EPJ Web of Conferences 221 (2019): 01034. http://dx.doi.org/10.1051/epjconf/201922101034.

Pełny tekst źródła
Streszczenie:
This paper discusses an approach to finite element modelling of structure elements considering material inhomogeneity. This approach is based on the functional dependence of mechanical properties on the spatial coordinates of finite elements. It allows modelling gradient transitions between different materials, which avoid stress discontinuities during strength analysis. The finite element models of cold formed angle, welded joint and thermal barrier coating, created by this method, have been presented.
Style APA, Harvard, Vancouver, ISO itp.
10

Chia, Julian Y. H., Kais Hbaieb i Q. X. Wang. "Finite Element Modelling Epoxy/Clay Nanocomposites". Key Engineering Materials 334-335 (marzec 2007): 785–88. http://dx.doi.org/10.4028/www.scientific.net/kem.334-335.785.

Pełny tekst źródła
Streszczenie:
A full 3D finite element method has been used to understand how nano-clay particles affect the mechanical properties of an epoxy/clay nanocomposite. The epoxy/clay nanocomposite has been modelled as a representative volume element (RVE) containing intercalated clay platelets that internally delaminates at the gallery layer upon satisfying an energy criterion, and an epoxy matrix that is elastic-plastic. A cohesive traction-displacement law is used to model the clay gallery behaviour until failure. For clay volume fractions >1%, clay particle interaction is observed to develop during uniaxial tension, the nanocomposite stiffness becomes non-linearly dependent on the clay volume fraction, and the Mori-Tanaka model overestimates the stiffness. Failure of the clay gallery is not observed and is believed to have no influence on the ultimate tensile strength of the nanocomposite.
Style APA, Harvard, Vancouver, ISO itp.
11

Jónás, Szabolcs, i Miklós Tisza. "Finite Element Modelling of Clinched Joints". Advanced Technologies & Materials 43, nr 1 (1.06.2018): 1–6. http://dx.doi.org/10.24867/atm-2018-1-001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Bouziane, Salah, Hamoudi Bouzerd i Mohamed Guenfoud. "Mixed finite element for modelling interfaces". European Journal of Computational Mechanics 18, nr 2 (styczeń 2009): 155–75. http://dx.doi.org/10.3166/ejcm.18.155-175.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Tang, B., H. S. Mitri i M. Bouteldja. "Finite-element modelling of rock anchors". Proceedings of the Institution of Civil Engineers - Ground Improvement 4, nr 2 (styczeń 2000): 65–71. http://dx.doi.org/10.1680/grim.2000.4.2.65.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Kopysov, S. P., A. K. Novikov, V. N. Rychkov, Yu A. Sagdeeva i L. E. Tonkov. "Virtual laboratory for finite element modelling". Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, nr 4 (grudzień 2010): 131–45. http://dx.doi.org/10.20537/vm100415.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Sykulski, J. K., i R. L. Stoll. "FINITE ELEMENT MODELLING OF INDUCTIVE SENSORS". COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 11, nr 1 (styczeń 1992): 69–72. http://dx.doi.org/10.1108/eb051754.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Bougharriou, A., K. Saï i W. Bouzid. "Finite element modelling of burnishing process". Materials Technology 25, nr 1 (marzec 2010): 56–62. http://dx.doi.org/10.1179/175355509x387110.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

AAMO, O. M., i T. I. FOSSEN. "Finite Element Modelling of Moored Vessels". Mathematical and Computer Modelling of Dynamical Systems 7, nr 1 (1.03.2001): 47–75. http://dx.doi.org/10.1076/mcmd.7.1.47.3632.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Krichen, A., K. Sai i W. Bouzid. "Finite element modelling of countersinking process". International Journal of Materials and Product Technology 33, nr 4 (2008): 376. http://dx.doi.org/10.1504/ijmpt.2008.022516.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Pecingina, O. M. "Modelling bucket excavation by finite element". IOP Conference Series: Materials Science and Engineering 95 (3.11.2015): 012046. http://dx.doi.org/10.1088/1757-899x/95/1/012046.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Servranckx, D., i A. A. Mufti. "Data structures for finite element modelling". Engineering Computations 3, nr 1 (styczeń 1986): 27–35. http://dx.doi.org/10.1108/eb023638.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Gay, Derek A. "Finite element modelling of steelpan acoustics". Journal of the Acoustical Society of America 123, nr 5 (maj 2008): 3799. http://dx.doi.org/10.1121/1.2935485.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Röhrle, O., J. Davidson i A. Pullan. "Finite element modelling of human mastication". Journal of Biomechanics 39 (styczeń 2006): S55. http://dx.doi.org/10.1016/s0021-9290(06)83099-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Pavlović, M. N., S. Arnaout i D. Hitchings. "Finite element modelling of sewer linings". Computers & Structures 63, nr 4 (maj 1997): 837–48. http://dx.doi.org/10.1016/s0045-7949(96)00067-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Rucki, M. D., i G. R. Miller. "An adaptable finite element modelling kernel". Computers & Structures 69, nr 3 (listopad 1998): 399–409. http://dx.doi.org/10.1016/s0045-7949(98)00104-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Mohr, G. "Finite element modelling of distribution problems". Applied Mathematics and Computation 105, nr 1 (październik 1999): 69–76. http://dx.doi.org/10.1016/s0096-3003(98)10097-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Marotti de Sciarra, Francesco. "Finite element modelling of nonlocal beams". Physica E: Low-dimensional Systems and Nanostructures 59 (maj 2014): 144–49. http://dx.doi.org/10.1016/j.physe.2014.01.005.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Aamo, O. M., i T. I. Fossen. "Finite element modelling of mooring lines". Mathematics and Computers in Simulation 53, nr 4-6 (październik 2000): 415–22. http://dx.doi.org/10.1016/s0378-4754(00)00235-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Ramakrishnan, N., i V. S. Arunachalam. "Finite element methods for materials modelling". Progress in Materials Science 42, nr 1-4 (styczeń 1997): 253–61. http://dx.doi.org/10.1016/s0079-6425(97)00031-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Holzinger, M. "Finite-element modelling of unbounded media". Simulation Practice and Theory 5, nr 6 (sierpień 1997): p27—p28. http://dx.doi.org/10.1016/s0928-4869(97)84249-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Prendergast, Patrick J., Caitríona Lally i Alexander B. Lennon. "Finite element modelling of medical devices". Medical Engineering & Physics 31, nr 4 (maj 2009): 419. http://dx.doi.org/10.1016/j.medengphy.2009.03.002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Petty, D. M. "Friction models for finite element modelling". Journal of Materials Processing Technology 45, nr 1-4 (wrzesień 1994): 7–12. http://dx.doi.org/10.1016/0924-0136(94)90310-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Mohammed, A. K., i S. T. Gomaa. "Finite element modelling of deep beams". Computers & Structures 48, nr 1 (lipiec 1993): 63–71. http://dx.doi.org/10.1016/0045-7949(93)90458-p.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Henrotte, F., B. Meys, H. Hedia, P. Dular i W. Legros. "Finite element modelling with transformation techniques". IEEE Transactions on Magnetics 35, nr 3 (maj 1999): 1434–37. http://dx.doi.org/10.1109/20.767235.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Armstrong, Cecil G. "Modelling requirements for finite-element analysis". Computer-Aided Design 26, nr 7 (lipiec 1994): 573–78. http://dx.doi.org/10.1016/0010-4485(94)90088-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Lin, Hua, Martin Sherburn, Jonathan Crookston, Andrew C. Long, Mike J. Clifford i I. Arthur Jones. "Finite element modelling of fabric compression". Modelling and Simulation in Materials Science and Engineering 16, nr 3 (26.03.2008): 035010. http://dx.doi.org/10.1088/0965-0393/16/3/035010.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Lin, Hua, Mike J. Clifford, Andrew C. Long i Martin Sherburn. "Finite element modelling of fabric shear". Modelling and Simulation in Materials Science and Engineering 17, nr 1 (16.12.2008): 015008. http://dx.doi.org/10.1088/0965-0393/17/1/015008.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Girdinio, P., M. Repetto i J. Simkin. "Finite element modelling of charged beams". IEEE Transactions on Magnetics 30, nr 5 (wrzesień 1994): 2932–35. http://dx.doi.org/10.1109/20.312551.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Leonard, P. J., D. Rodger, T. Karagular i P. C. Coles. "Finite element modelling of magnetic hysteresis". IEEE Transactions on Magnetics 31, nr 3 (maj 1995): 1801–4. http://dx.doi.org/10.1109/20.376386.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Beynon, John H. "Finite–element modelling of thermomechanical processing". Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 357, nr 1756 (15.06.1999): 1573–87. http://dx.doi.org/10.1098/rsta.1999.0390.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Seetharamu, K. N., R. Paragasam, Ghulam A. Quadir, Z. A. Zainal, B. Sathya Prasad i T. Sundararajan. "Finite element modelling of solidification phenomena". Sadhana 26, nr 1-2 (luty 2001): 103–20. http://dx.doi.org/10.1007/bf02728481.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Papatriantafillou, Ioannis, Nikolaos Aravas i Gregory N. Haidemenopoulos. "Finite Element Modelling of TRIP Steels". steel research international 75, nr 11 (listopad 2004): 730–36. http://dx.doi.org/10.1002/srin.200405835.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Sizova, Irina, Alexander Sviridov, Martin Günther i Markus Bambach. "Finite Element Modelling of Titanium Aluminides". Computer Methods in Material Science 17, nr 1 (2017): 51–58. http://dx.doi.org/10.7494/cmms.2017.1.0575.

Pełny tekst źródła
Streszczenie:
Hot forging is an important process for shaping and property control of lightweight titanium aluminide parts. Dynamic recrystallization and phase transformations play an essential role for the resulting grain size and accordingly the mechanical properties. Due to the fact that titanium aluminides require forging under isothermal conditions, reliable process modeling is needed to predict the microstructure evolution, to optimize the process time and to avoid excessive die loads. In the present study an isothermal forging process of a compressor blade made of TNB-V4 (Ti–44.5Al–6.25Nb–0.8Mo–0.1B, at. %) is modeled using the Finite Element (FE) – Software Q-Form. A microstructure model describing the microstructure evolution during forging is presented. To calibrate the model, the high-temperature deformation behavior was investigated using isothermal compression tests. The tests were carried out at temperatures from 1150°C to 1300°C, applying strain rates ranging from 0.001s-1 to 0.5s-1, up to a true strain of 0.9. The experimentally determined flow stress data were described with model equations determined form the course of the strain hardening rate in Kocks-Mecking plots. An isothermal forging process of a compressor blade was carried out and used to validate the results from the FE simulations.
Style APA, Harvard, Vancouver, ISO itp.
43

Cheng, Xianchao, i Lin Zhang. "Finite-element modelling of multilayer X-ray optics". Journal of Synchrotron Radiation 24, nr 3 (11.04.2017): 717–24. http://dx.doi.org/10.1107/s1600577517004738.

Pełny tekst źródła
Streszczenie:
Multilayer optical elements for hard X-rays are an attractive alternative to crystals whenever high photon flux and moderate energy resolution are required. Prediction of the temperature, strain and stress distribution in the multilayer optics is essential in designing the cooling scheme and optimizing geometrical parameters for multilayer optics. The finite-element analysis (FEA) model of the multilayer optics is a well established tool for doing so. Multilayers used in X-ray optics typically consist of hundreds of periods of two types of materials. The thickness of one period is a few nanometers. Most multilayers are coated on silicon substrates of typical size 60 mm × 60 mm × 100–300 mm. The high aspect ratio between the size of the optics and the thickness of the multilayer (107) can lead to a huge number of elements for the finite-element model. For instance, meshing by the size of the layers will require more than 1016 elements, which is an impossible task for present-day computers. Conversely, meshing by the size of the substrate will produce a too high element shape ratio (element geometry width/height > 106), which causes low solution accuracy; and the number of elements is still very large (106). In this work, by use of ANSYS layer-functioned elements, a thermal-structural FEA model has been implemented for multilayer X-ray optics. The possible number of layers that can be computed by presently available computers is increased considerably.
Style APA, Harvard, Vancouver, ISO itp.
44

Brůha, Jan, i Drahomír Rychecký. "Modelling of Rotating Twisted Blades as 1D Continuum". Applied Mechanics and Materials 821 (styczeń 2016): 183–90. http://dx.doi.org/10.4028/www.scientific.net/amm.821.183.

Pełny tekst źródła
Streszczenie:
Presented paper deals with modelling of a twisted blade with rhombic shroud as one-dimensional continuum by means of Rayleigh beam finite elements with varying cross-sectional parameters along the finite elements. The blade is clamped into a rotating rigid disk and the shroud is considered to be a rigid body. Since the finite element models based on the Rayleigh beam theory tend to slightly overestimate natural frequencies and underestimate deflections in comparison with finite element models including shear deformation effects, parameter tuning of the blade is performed.
Style APA, Harvard, Vancouver, ISO itp.
45

Yushchenko, K. A., E. A. Velikoivanenko, N. O. Chervyakov, G. F. Rozynka i N. I. Pivtorak. "Finite-element modelling of stress-strain state in weldability tests (PVR-TEST)". Paton Welding Journal 2016, nr 12 (28.12.2016): 9–12. http://dx.doi.org/10.15407/tpwj2016.12.02.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Rezaeealam, Behrooz. "Finite-element/boundary-element transient modelling of hysteresis motors". Journal of Magnetism and Magnetic Materials 519 (luty 2021): 167474. http://dx.doi.org/10.1016/j.jmmm.2020.167474.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Lengiewicz, Jakub, i Stanisław Stupkiewicz. "Continuum framework for finite element modelling of finite wear". Computer Methods in Applied Mechanics and Engineering 205-208 (styczeń 2012): 178–88. http://dx.doi.org/10.1016/j.cma.2010.12.020.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Spoormaker, J. L., I. D. Skrypnyk i T. O. Vasylkevych. "Finite-element modelling of creep-induced buckling of HDPE elements". Materials Science 35, nr 2 (marzec 1999): 193–204. http://dx.doi.org/10.1007/bf02359979.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

LAGHROUCHE, OMAR, i PETER BETTESS. "SHORT WAVE MODELLING USING SPECIAL FINITE ELEMENTS". Journal of Computational Acoustics 08, nr 01 (marzec 2000): 189–210. http://dx.doi.org/10.1142/s0218396x00000121.

Pełny tekst źródła
Streszczenie:
The solutions to the Helmholtz equation in the plane are approximated by systems of plane waves. The aim is to develop finite elements capable of containing many wavelengths and therefore simulating problems with large wave numbers without refining the mesh to satisfy the traditional requirement of about ten nodal points per wavelength. At each node of the meshed domain, the wave potential is written as a combination of plane waves propagating in many possible directions. The resulting element matrices contain oscillatory functions and are evaluated using high order Gauss-Legendre integration. These finite elements are used to solve wave problems such as a diffracted potential from a cylinder. Many wavelengths are contained in a single finite element and the number of parameters in the problem is greatly reduced.
Style APA, Harvard, Vancouver, ISO itp.
50

Kalanta, Stanislovas. "FINITE ELEMENTS FOR MODELLING BEAMS AFFECTED BY A DISTRIBUTED LOAD". JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT 5, nr 2 (30.04.1999): 91–99. http://dx.doi.org/10.3846/13921525.1999.10531442.

Pełny tekst źródła
Streszczenie:
Usually a finite element with cubic deflection approximation function is applied when evaluating the stress and strain field of bar structures. But such an element only approximately evaluates the actual strain field of the bar affected by a distributed load. The improved finite elements (Fig 1, 2) with fourth and fifth-order deflection approximation functions (1), (6) and (13) are presented in the actual manuscript. The fifth-order deflection approximation function is used for modelling the beams affected by a linearly distributed load (11). The plain bending of the finite element is modelled by 5 and 6 freedom degrees. The additional 5th and 6th freedom degrees are the deflection and deviation of the middle node of element (Fig 2). The element stiffness matrices (Table 1, 2) and node force vectors are presented. The created finite elements exactly modells the stress and strain field of bars, which are affected by distributed load, and also allow to compute directly the middle section displacements of bars. It creates conditions for diminishing the volume of problems and obtaining information, which is necessary to be analysed later. The reduced finite elements (Fig 4) are created by the elimination of the internal freedom degrees. Their number of freedom degrees is decreased up to the number of freedom degrees of a usually applied finite element. But the reduced finite elements have all afore-mentioned qualities. Formulas (20) and (21) are derived expressing the middle node displacements by the final node displacements. These formulas allow to compute the middle section displacements of the bar already after the solution of equation system. The proposed reduced elements can be introduced and applied in engineering practice very easily, because their stiffness matrix coincide with the stiffness matrix of a usual bar finite element. The created elements with internal freedom degrees are very important for the problems of structures optimization with displacement constraints, because the constraint of bar middle section displacement can form just in case, when this displacement is one of the problem's unknown. Also it is very important to decrease the number of unknowns of optimization problem.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii