Gotowa bibliografia na temat „Finite Element Method Electromagnetics”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Finite Element Method Electromagnetics”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Finite Element Method Electromagnetics"
Apaydin, Gokhan. "Efficient Finite-Element Method for Electromagnetics". IEEE Antennas and Propagation Magazine 51, nr 5 (październik 2009): 61–71. http://dx.doi.org/10.1109/map.2009.5432042.
Pełny tekst źródłaGlisson, A. "Finite Element Method For Electromagnetics (Book Review)". IEEE Antennas and Propagation Magazine 40, nr 4 (sierpień 1998): 82–83. http://dx.doi.org/10.1109/map.1998.730540.
Pełny tekst źródłaSalon, S. "The hybrid finite element-boundary element method in electromagnetics". IEEE Transactions on Magnetics 21, nr 5 (wrzesień 1985): 1829–34. http://dx.doi.org/10.1109/tmag.1985.1064065.
Pełny tekst źródłaDelisle, Gilles Y., Ke Li Wu i John Litva. "Coupled finite element and boundary element method in electromagnetics". Computer Physics Communications 68, nr 1-3 (listopad 1991): 255–78. http://dx.doi.org/10.1016/0010-4655(91)90203-w.
Pełny tekst źródłaGibson, A. A. P. "Book Review: The Finite Element Method in Electromagnetics:". International Journal of Electrical Engineering & Education 31, nr 1 (styczeń 1994): 93–94. http://dx.doi.org/10.1177/002072099403100122.
Pełny tekst źródłaRachowicz, W., i L. Demkowicz. "An hp-adaptive finite element method for electromagnetics". Computer Methods in Applied Mechanics and Engineering 187, nr 1-2 (czerwiec 2000): 307–35. http://dx.doi.org/10.1016/s0045-7825(99)00137-1.
Pełny tekst źródłaGedney, S. "The finite element method in electromagnetics [Book Review]". IEEE Antennas and Propagation Magazine 36, nr 3 (czerwiec 1994): 75–76. http://dx.doi.org/10.1109/map.1994.1068064.
Pełny tekst źródłaPolycarpou, Anastasis C. "Introduction to the Finite Element Method in Electromagnetics". Synthesis Lectures on Computational Electromagnetics 1, nr 1 (styczeń 2006): 1–126. http://dx.doi.org/10.2200/s00019ed1v01y200604cem004.
Pełny tekst źródłaAmirjani, Amirmostafa, i S. K. Sadrnezhaad. "Computational electromagnetics in plasmonic nanostructures". Journal of Materials Chemistry C 9, nr 31 (2021): 9791–819. http://dx.doi.org/10.1039/d1tc01742j.
Pełny tekst źródłaSalon, S. J., i J. D'Angelo. "Applications of the hybrid finite element-boundary element method in electromagnetics". IEEE Transactions on Magnetics 24, nr 1 (1988): 80–85. http://dx.doi.org/10.1109/20.43861.
Pełny tekst źródłaRozprawy doktorskie na temat "Finite Element Method Electromagnetics"
Young, André. "Mesh termination schemes for the finite element method in electromagnetics /". Link to the online version, 2007. http://hdl.handle.net/10019/735.
Pełny tekst źródłaYoung, Andre. "Mesh termination schemes for the finite element method in electromagnetics". Thesis, Stellenbosch : Stellenbosch University, 2007. http://hdl.handle.net/10019.1/2831.
Pełny tekst źródłaThe finite element method is a very efficient numerical tool to solve geometrically complex problems in electromagnetics. Traditionally the method is applied to bounded domain problems, but it can also be forged to solve unbounded domain problems using one of various mesh termination schemes. A scalar finite element solution to a typical unbounded two-dimensional problem is presented and the need for a proper mesh termination scheme is motivated. Different such schemes, specifically absorbing boundary conditions, the finite element boundary integral method and infinite elements, are formulated and implemented. These schemes are directly compared using different criteria, especially solution accuracy and computational efficiency. A vector finite element solution in three dimensions is also discussed and a new type of infinite element compatible with tetrahedral vector finite elements is presented. The performance of this infinite element is compared to that of a first order absorbing boundary condition.
Lu, Chuan. "Generalized finite element method for electromagnetic analysis". Diss., Connect to online resource - MSU authorized users, 2008.
Znajdź pełny tekst źródłaTitle from PDF t.p. (viewed on Apr. 8, 2009) Includes bibliographical references (p. 148-153). Also issued in print.
Vardapetyan, Leon. "Hp-adaptive finite element method for electromagnetics with applications to waveguiding structures /". Digital version accessible at:, 1999. http://wwwlib.umi.com/cr/utexas/main.
Pełny tekst źródłaMarais, Neilen. "Higher order hierarchal curvilinear triangular vector elements for the finite element method in computational electromagnetics". Thesis, Stellenbosch : Stellenbosch University, 2003. http://hdl.handle.net/10019.1/53447.
Pełny tekst źródłaENGLISH ABSTRACT: The Finite Element Method (FEM) as applied to Computational Electromagnetics (CEM), can be used to solve a large class of Electromagnetics problems with high accuracy, and good computational efficiency. Computational efficiency can be improved by using element basis functions of higher order. If, however, the chosen element type is not able to accurately discretise the computational domain, the converse might be true. This paper investigates the application of elements with curved sides, and higher order basis functions, to computational domains with curved boundaries. It is shown that these elements greatly improve the computational efficiency of the FEM applied to such domains, as compared to using elements with straight sides, and/or low order bases.
AFRIKAANSE OPSOMMING: Die Eindige Element Metode (EEM) kan breedvoerig op Numeriese Elektromagnetika toegepas word, met uitstekende akkuraatheid en 'n hoë doeltreffendheids vlak. Numeriese doeltreffendheid kan verbeter word deur van hoër orde element basisfunksies gebruik te maak. Indien die element egter nie die numeriese domein effektief kan diskretiseer nie, mag die omgekeerde geld. Hierdie tesis ondersoek die toepassing van elemente met geboë sye, en hoër orde basisfunksies, op numeriese domeine met geboë grense. Daar word getoon dat sulke elemente 'n noemenswaardinge verbetering in die numeriese doeltreffendheid van die EEM meebring, vergeleke met reguit- en/of laer-orde elemente.
Marais, Neilen. "Efficient high-order time domain finite element methods in electromagnetics". Thesis, Stellenbosch : University of Stellenbosch, 2009. http://hdl.handle.net/10019.1/1499.
Pełny tekst źródłaThe Finite Element Method (FEM) as applied to Computational Electromagnetics (CEM), can beused to solve a large class of Electromagnetics problems with high accuracy and good computational efficiency. For solving wide-band problems time domain solutions are often preferred; while time domain FEM methods are feasible, the Finite Difference Time Domain (FDTD) method is more commonly applied. The FDTD is popular both for its efficiency and its simplicity. The efficiency of the FDTD stems from the fact that it is both explicit (i.e. no matrices need to be solved) and second order accurate in both time and space. The FDTD has limitations when dealing with certain geometrical shapes and when electrically large structures are analysed. The former limitation is caused by stair-casing in the geometrical modelling, the latter by accumulated dispersion error throughout the mesh. The FEM can be seen as a general mathematical framework describing families of concrete numerical method implementations; in fact the FDTD can be described as a particular FETD (Finite Element Time Domain) method. To date the most commonly described FETD CEM methods make use of unstructured, conforming meshes and implicit time stepping schemes. Such meshes deal well with complex geometries while implicit time stepping is required for practical numerical stability. Compared to the FDTD, these methods have the advantages of computational efficiency when dealing with complex geometries and the conceptually straight forward extension to higher orders of accuracy. On the downside, they are much more complicated to implement and less computationally efficient when dealing with regular geometries. The FDTD and implicit FETD have been combined in an implicit/explicit hybrid. By using the implicit FETD in regions of complex geometry and the FDTD elsewhere the advantages of both are combined. However, previous work only addressed mixed first order (i.e. second order accurate) methods. For electrically large problems or when very accurate solutions are required, higher order methods are attractive. In this thesis a novel higher order implicit/explicit FETD method of arbitrary order in space is presented. A higher order explicit FETD method is implemented using Gauss-Lobatto lumping on regular Cartesian hexahedra with central differencing in time applied to a coupled Maxwell’s equation FEM formulation. This can be seen as a spatially higher order generalisation of the FDTD. A convolution-free perfectly matched layer (PML) method is adapted from the FDTD literature to provide mesh termination. A curl conforming hybrid mesh allowing the interconnection of arbitrary order tetrahedra and hexahedra without using intermediate pyramidal or prismatic elements is presented. An unconditionally stable implicit FETD method is implemented using Newmark-Beta time integration and the standard curl-curl FEM formulation. The implicit/explicit hybrid is constructed on the hybrid hexahedral/tetrahedral mesh using the equivalence between the coupled Maxwell’s formulation with central differences and the Newmark-Beta method with Beta = 0 and the element-wise implicitness method. The accuracy and efficiency of this hybrid is numerically demonstrated using several test-problems.
Zhao, Kezhong. "A domain decomposition method for solving electrically large electromagnetic problems". Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1189694496.
Pełny tekst źródłaWang, Shumin. "Improved-accuracy algorithms for time-domain finite methods in electromagnetics". The Ohio State University, 2003. http://rave.ohiolink.edu/etdc/view?acc_num=osu1061225243.
Pełny tekst źródłaDubcová, Lenka. "Novel self-adaptive higher-order finite elements methods for Maxwell's equations of electromagnetics". To access this resource online via ProQuest Dissertations and Theses @ UTEP, 2008. http://0-proquest.umi.com.lib.utep.edu/login?COPT=REJTPTU0YmImSU5UPTAmVkVSPTI=&clientId=2515.
Pełny tekst źródłaKung, Christopher W. "Development of a time domain hybrid finite difference/finite element method for solutions to Maxwell's equations in anisotropic media". Columbus, Ohio : Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1238024768.
Pełny tekst źródłaKsiążki na temat "Finite Element Method Electromagnetics"
The finite element method in electromagnetics. New York: Wiley, 1993.
Znajdź pełny tekst źródłaThe finite element method in electromagnetics. Wyd. 2. New York: John Wiley & Sons, 2002.
Znajdź pełny tekst źródłaCardoso, José Roberto. Electromagnetics Through the Finite Element Method. Redaktor José Roberto Cardoso. Boca Raton : Taylor & Francis, 2016. | “A CRC title.”: CRC Press, 2016. http://dx.doi.org/10.1201/9781315366777.
Pełny tekst źródłaJin, Jianming. The finite element method in electromagnetics. Chichester: Wiley, 1993.
Znajdź pełny tekst źródłaPolycarpou, Anastasis C. Introduction to the Finite Element Method in Electromagnetics. Cham: Springer International Publishing, 2006. http://dx.doi.org/10.1007/978-3-031-01689-9.
Pełny tekst źródłaJ, Reddy C., i Langley Research Center, red. Finite element method for Eigenvalue problems in electromagnetics. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1994.
Znajdź pełny tekst źródłaT, Cwik, i Patterson J, red. Computational electromagnetics and supercomputer architecture. Cambridge, Mass: EMW Publishing, 1993.
Znajdź pełny tekst źródłaP, Silvester P., Pelosi Giuseppe i IEEE Antennas and Propagation Society., red. Finite elements for wave electromagnetics: Methods and techniques. New York: Institute of Electrical and Electronics Engineers, 1994.
Znajdź pełny tekst źródłaBastos, Joao. Electromagnetic modeling by finite element methods. New York: Marcel Dekker, 2003.
Znajdź pełny tekst źródłaGerard, Meunier, red. The finite element method for electromagnetic modeling. London: Wiley, 2008.
Znajdź pełny tekst źródłaCzęści książek na temat "Finite Element Method Electromagnetics"
Rylander, Thomas, Pär Ingelström i Anders Bondeson. "The Finite Element Method". W Computational Electromagnetics, 93–184. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-5351-2_6.
Pełny tekst źródłaTsiboukis, Theodoros D. "The Node Based Finite Element Method". W Applied Computational Electromagnetics, 139–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-59629-2_9.
Pełny tekst źródłaCardoso, José Roberto. "Steps for Finite Element Method". W Electromagnetics Through the Finite Element Method, 1–14. Boca Raton : Taylor & Francis, 2016. | “A CRC title.”: CRC Press, 2016. http://dx.doi.org/10.1201/9781315366777-1.
Pełny tekst źródłaCardoso, José Roberto. "Three-Dimensional Finite Element Method". W Electromagnetics Through the Finite Element Method, 173–84. Boca Raton : Taylor & Francis, 2016. | “A CRC title.”: CRC Press, 2016. http://dx.doi.org/10.1201/9781315366777-8.
Pełny tekst źródłaVolakis, John L. "Two-Dimensional Finite Element — Boundary Integral Method". W Applied Computational Electromagnetics, 175–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-59629-2_12.
Pełny tekst źródłaIda, Nathan, i João P. A. Bastos. "Introduction to the Finite Element Method". W Electromagnetics and Calculation of Fields, 265–342. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-0661-3_8.
Pełny tekst źródłaCardoso, José Roberto. "Finite Element Method for Axisymmetric Geometries". W Electromagnetics Through the Finite Element Method, 141–58. Boca Raton : Taylor & Francis, 2016. | “A CRC title.”: CRC Press, 2016. http://dx.doi.org/10.1201/9781315366777-6.
Pełny tekst źródłaCardoso, José Roberto. "Finite Element Method for High Frequency". W Electromagnetics Through the Finite Element Method, 159–72. Boca Raton : Taylor & Francis, 2016. | “A CRC title.”: CRC Press, 2016. http://dx.doi.org/10.1201/9781315366777-7.
Pełny tekst źródłaCardoso, José Roberto. "Fundamentals of Electromagnetism". W Electromagnetics Through the Finite Element Method, 15–46. Boca Raton : Taylor & Francis, 2016. | “A CRC title.”: CRC Press, 2016. http://dx.doi.org/10.1201/9781315366777-2.
Pełny tekst źródłaAtlamazoglou, Prodromos E., i Nikolaos K. Uzunoglu. "Multigrid Techniques for the Finite Element Method in Electromagnetics". W Applied Computational Electromagnetics, 521–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-59629-2_30.
Pełny tekst źródłaStreszczenia konferencji na temat "Finite Element Method Electromagnetics"
Tuncer, O., B. Shanker i L. C. Kempel. "A hybrid finite element – Vector generalized finite element method for electromagnetics". W 2010 IEEE International Symposium Antennas and Propagation and CNC-USNC/URSI Radio Science Meeting. IEEE, 2010. http://dx.doi.org/10.1109/aps.2010.5561926.
Pełny tekst źródłaChen, Jiefu, i Shubin Zeng. "A Domain Decomposition Semianalytical Finite Element Method". W 2018 IEEE International Conference on Computational Electromagnetics (ICCEM). IEEE, 2018. http://dx.doi.org/10.1109/compem.2018.8496660.
Pełny tekst źródłaDular, P., R. V. Sabariego i L. Krahenbiihl. "Perturbation finite element method for magnetic circuits". W IET 7th International Conference on Computation in Electromagnetics (CEM 2008). IEE, 2008. http://dx.doi.org/10.1049/cp:20080235.
Pełny tekst źródłaZhu, Bao, Jiefu Chen i Wanxie Zhong. "A hybrid finite-element / finite-difference method with implicit-explicit time stepping scheme for Maxwell's equations". W Computational Electromagnetics (ICMTCE). IEEE, 2011. http://dx.doi.org/10.1109/icmtce.2011.5915564.
Pełny tekst źródłaGarcia-Donoro, Daniel, Luis E. Garcia-Castillo i Magdalena Salazar-Palma. "Parallel Finite Element Method solver for Antenna Analysis". W 2018 International Conference on Electromagnetics in Advanced Applications (ICEAA). IEEE, 2018. http://dx.doi.org/10.1109/iceaa.2018.8520403.
Pełny tekst źródłaLi, Jianhua, Ganquan Xie, Lee Xie, Feng Xie i Shigu Cao. "3D electromagnetic elastic joint finite element method and stochastic SGILD method". W 2017 Progress In Electromagnetics Research Symposium - Spring (PIERS). IEEE, 2017. http://dx.doi.org/10.1109/piers.2017.8261857.
Pełny tekst źródłaGarcia-Donoro, Daniel, Ignacio Martinez-Fernandez, Luis E. Garcia-Castillo i Magdalena Salazar-Palma. "HOFEM: A higher order finite element method electromagnetic simulator". W 2015 IEEE International Conference on Computational Electromagnetics (ICCEM). IEEE, 2015. http://dx.doi.org/10.1109/compem.2015.7052537.
Pełny tekst źródłaOnuki, T. "The boundary-element-like estimation of the electromagnetic force in the finite element method". W Second International Conference on Computation in Electromagnetics. IEE, 1994. http://dx.doi.org/10.1049/cp:19940063.
Pełny tekst źródłaHollaus, Karl, i Markus Schobinger. "Multiscale finite element method for perturbation of laminated structures". W 2017 International Conference on Electromagnetics in Advanced Applications (ICEAA). IEEE, 2017. http://dx.doi.org/10.1109/iceaa.2017.8065501.
Pełny tekst źródłaMumcu, G., M. Valerio, K. Sertel i J. L. Volakis. "Applications of the Finite Element Method to Designing Composite Metamaterials". W 2007 International Conference on Electromagnetics in Advanced Applications. IEEE, 2007. http://dx.doi.org/10.1109/iceaa.2007.4387429.
Pełny tekst źródłaRaporty organizacyjne na temat "Finite Element Method Electromagnetics"
White, D., M. Stowell, J. Koning, R. Rieben, A. Fisher, N. Champagne i N. Madsen. Higher-Order Mixed Finite Element Methods for Time Domain Electromagnetics. Office of Scientific and Technical Information (OSTI), luty 2004. http://dx.doi.org/10.2172/15014733.
Pełny tekst źródłaAsgharian, Davood. A technique to calculate complex electromagnetic fields by using the finite element method. Portland State University Library, styczeń 2000. http://dx.doi.org/10.15760/etd.2859.
Pełny tekst źródłaRieben, Robert N. A Novel High Order Time Domain Vector Finite Element Method for the Simulation of Electromagnetic Devices. Office of Scientific and Technical Information (OSTI), styczeń 2004. http://dx.doi.org/10.2172/15014486.
Pełny tekst źródłaNelson, Eric Michael. High accuracy electromagnetic field solvers for cylindrical waveguides and axisymmetric structures using the finite element method. Office of Scientific and Technical Information (OSTI), grudzień 1993. http://dx.doi.org/10.2172/10129732.
Pełny tekst źródłaBabuska, Ivo, Uday Banerjee i John E. Osborn. Superconvergence in the Generalized Finite Element Method. Fort Belvoir, VA: Defense Technical Information Center, styczeń 2005. http://dx.doi.org/10.21236/ada440610.
Pełny tekst źródłaCoyle, J. M., i J. E. Flaherty. Adaptive Finite Element Method II: Error Estimation. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 1994. http://dx.doi.org/10.21236/ada288358.
Pełny tekst źródłaBabuska, I., i J. M. Melenk. The Partition of Unity Finite Element Method. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 1995. http://dx.doi.org/10.21236/ada301760.
Pełny tekst źródłaDuarte, Carlos A. A Generalized Finite Element Method for Multiscale Simulations. Fort Belvoir, VA: Defense Technical Information Center, maj 2012. http://dx.doi.org/10.21236/ada577139.
Pełny tekst źródłaManzini, Gianmarco, i Vitaliy Gyrya. Final Report of the Project "From the finite element method to the virtual element method". Office of Scientific and Technical Information (OSTI), grudzień 2017. http://dx.doi.org/10.2172/1415356.
Pełny tekst źródłaManzini, Gianmarco. The Mimetic Finite Element Method and the Virtual Element Method for elliptic problems with arbitrary regularity. Office of Scientific and Technical Information (OSTI), lipiec 2012. http://dx.doi.org/10.2172/1046508.
Pełny tekst źródła