Gotowa bibliografia na temat „Finite density QCD”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Finite density QCD”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Finite density QCD"

1

Barbour, I. M. "QCD at finite density". Nuclear Physics B - Proceedings Supplements 26 (styczeń 1992): 22–30. http://dx.doi.org/10.1016/0920-5632(92)90226-i.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Lombardo, Maria-Paola. "Lattice QCD at Finite Density". Progress of Theoretical Physics Supplement 153 (2004): 26–39. http://dx.doi.org/10.1143/ptps.153.26.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Son, D. T., i M. A. Stephanov. "QCD at Finite Isospin Density". Physical Review Letters 86, nr 4 (22.01.2001): 592–95. http://dx.doi.org/10.1103/physrevlett.86.592.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Kogut, J. B., M. P. Lombardo i D. K. Sinclair. "Quenched QCD at finite density". Physical Review D 51, nr 3 (1.02.1995): 1282–91. http://dx.doi.org/10.1103/physrevd.51.1282.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Aloisio, R., V. Azcoiti, G. Di Carlo, A. Galante i A. F. Grillo. "Frustration in finite density QCD". Physics Letters B 435, nr 1-2 (wrzesień 1998): 175–80. http://dx.doi.org/10.1016/s0370-2693(98)00762-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Barbour, Ian M., Susan E. Morrison, Elyakum G. Klepfish, John B. Kogut i Maria-Paola Lombardo. "Results on finite density QCD". Nuclear Physics B - Proceedings Supplements 60, nr 1-2 (styczeń 1998): 220–33. http://dx.doi.org/10.1016/s0920-5632(97)00484-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Barbour, I. M., C. T. H. Davies i Z. Sabeur. "Lattice QCD at finite density". Physics Letters B 215, nr 3 (grudzień 1988): 567–72. http://dx.doi.org/10.1016/0370-2693(88)91361-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Vladikas, A. "QCD at finite baryon density". Nuclear Physics B - Proceedings Supplements 4 (kwiecień 1988): 322–26. http://dx.doi.org/10.1016/0920-5632(88)90122-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Barbour, I. M. "Lattice QCD at finite density". Nuclear Physics B - Proceedings Supplements 17 (wrzesień 1990): 243–47. http://dx.doi.org/10.1016/0920-5632(90)90246-q.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Toussaint, D. "Simulating QCD at finite density". Nuclear Physics B - Proceedings Supplements 17 (wrzesień 1990): 248–51. http://dx.doi.org/10.1016/0920-5632(90)90247-r.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Finite density QCD"

1

Crompton, P. R. "Lee-Yang zeros analysis of finite density lattice QCD". Thesis, University of Glasgow, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.368583.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Hatta, Yoshitaka. "The QCD phase transition at finite temperature and density". 京都大学 (Kyoto University), 2004. http://hdl.handle.net/2433/147809.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Vuorinen, Aleksi. "The pressure of QCD at finite temperature and quark number density". Helsinki : University of Helsinki, 2003. http://ethesis.helsinki.fi/julkaisut/mat/fysik/vk/vuorinen/.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Morrison, Susan Elizabeth. "Lattice QCD at finite baryon density with an implementation of dynamical fermions". Thesis, University of Glasgow, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.363152.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Bluhm, Marcus. "QCD equation of state of hot deconfined matter at finite baryon density : a quasiparticle perspective". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1232358506561-61975.

Pełny tekst źródła
Streszczenie:
The quasiparticle model, based on quark and gluon degrees of freedom, has been developed for the description of the thermodynamics of a hot plasma of strongly interacting matter which is of enormous relevance in astrophysics, cosmology and for relativistic heavy-ion collisions as well. In the present work, this phenomenological model is extended into the realm of imaginary chemical potential and towards including, in general, different and independent quark flavour chemical potentials. In this way, nonzero net baryon-density effects in the equation of state are self-consistently attainable. Furthermore, a chain of approximations based on formal mathematical manipulations is presented which outlines the connection of the quasiparticle model with the underlying gauge field theory of strong interactions, QCD, putting the model on firmer ground. A comparison of quasiparticle model results with available lattice QCD data for, e. g., basic bulk thermodynamic quantities and various susceptibilities such as diagonal and off-diagonal susceptibilities, which provide a rich and sensitive testing ground, is found to be successful. Furthermore, different thermodynamic quantities and the phase diagram for imaginary chemical potential are faithfully described. Thus, the applicability of the model to extrapolate the equation of state known from lattice QCD at zero baryon density to nonzero baryon densities is shown. In addition, the ability of the model to extrapolate results to the chiral limit and to asymptotically large temperatures is illustrated by confrontation with available first-principle lattice QCD results. These extrapolations demonstrate the predictive power of the model. Basing on these successful comparisons supporting the idea that the hot deconfined phase can be described in a consistent picture by dressed quark and gluon degrees of freedom, a reliable QCD equation of state is constructed and baryon-density effects are examined, also along isentropic evolutionary paths. Scaling properties of the equation of state with fundamental QCD parameters such as the number of active quark flavour degrees of freedom, the entering quark mass parameters or the numerical value of the deconfinement transition temperature are discussed, and the robustness of the equation of state in the regions of small and large energy densities is shown. Uncertainties arising in the transition region are taken into account by constructing a family of equations of state whose members differ from each other in the specific interpolation prescription between large energy density region and a realistic hadron resonance gas equation of state at low energy densities. The obtained family of equations of state is applied in hydrodynamic simulations, and the implications of variations in the transition region are discussed by considering transverse momentum spectra and differential elliptic flow of directly emitted hadrons, in particular of strange baryons, for both, RHIC top energy and LHC conditions. Finally, with regard to FAIR physics, implications of the possible presence of a QCD critical point on the equation of state are outlined both, in an exemplary toy model and for an extended quasiparticle model.
Style APA, Harvard, Vancouver, ISO itp.
6

Bluhm, Marcus. "QCD equation of state of hot deconfined matter at finite baryon density : a quasiparticle perspective". Doctoral thesis, Technische Universität Dresden, 2008. https://tud.qucosa.de/id/qucosa%3A23996.

Pełny tekst źródła
Streszczenie:
The quasiparticle model, based on quark and gluon degrees of freedom, has been developed for the description of the thermodynamics of a hot plasma of strongly interacting matter which is of enormous relevance in astrophysics, cosmology and for relativistic heavy-ion collisions as well. In the present work, this phenomenological model is extended into the realm of imaginary chemical potential and towards including, in general, different and independent quark flavour chemical potentials. In this way, nonzero net baryon-density effects in the equation of state are self-consistently attainable. Furthermore, a chain of approximations based on formal mathematical manipulations is presented which outlines the connection of the quasiparticle model with the underlying gauge field theory of strong interactions, QCD, putting the model on firmer ground. A comparison of quasiparticle model results with available lattice QCD data for, e. g., basic bulk thermodynamic quantities and various susceptibilities such as diagonal and off-diagonal susceptibilities, which provide a rich and sensitive testing ground, is found to be successful. Furthermore, different thermodynamic quantities and the phase diagram for imaginary chemical potential are faithfully described. Thus, the applicability of the model to extrapolate the equation of state known from lattice QCD at zero baryon density to nonzero baryon densities is shown. In addition, the ability of the model to extrapolate results to the chiral limit and to asymptotically large temperatures is illustrated by confrontation with available first-principle lattice QCD results. These extrapolations demonstrate the predictive power of the model. Basing on these successful comparisons supporting the idea that the hot deconfined phase can be described in a consistent picture by dressed quark and gluon degrees of freedom, a reliable QCD equation of state is constructed and baryon-density effects are examined, also along isentropic evolutionary paths. Scaling properties of the equation of state with fundamental QCD parameters such as the number of active quark flavour degrees of freedom, the entering quark mass parameters or the numerical value of the deconfinement transition temperature are discussed, and the robustness of the equation of state in the regions of small and large energy densities is shown. Uncertainties arising in the transition region are taken into account by constructing a family of equations of state whose members differ from each other in the specific interpolation prescription between large energy density region and a realistic hadron resonance gas equation of state at low energy densities. The obtained family of equations of state is applied in hydrodynamic simulations, and the implications of variations in the transition region are discussed by considering transverse momentum spectra and differential elliptic flow of directly emitted hadrons, in particular of strange baryons, for both, RHIC top energy and LHC conditions. Finally, with regard to FAIR physics, implications of the possible presence of a QCD critical point on the equation of state are outlined both, in an exemplary toy model and for an extended quasiparticle model.
Style APA, Harvard, Vancouver, ISO itp.
7

Mogliacci, Sylvain [Verfasser]. "Probing the finite density equation of state of QCD via resummed perturbation theory / Sylvain Mogliacci". Bielefeld : Universitätsbibliothek Bielefeld, 2014. http://d-nb.info/1053467508/34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Müller, Daniel Verfasser], Jochen [Akademischer Betreuer] [Wambach i Michael [Akademischer Betreuer] Buballa. "QCD at finite density with Dyson-Schwinger equations / Daniel Müller. Betreuer: Jochen Wambach ; Michael Buballa". Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2013. http://d-nb.info/1106454871/34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Müller, Daniel [Verfasser], Jochen [Akademischer Betreuer] Wambach i Michael [Akademischer Betreuer] Buballa. "QCD at finite density with Dyson-Schwinger equations / Daniel Müller. Betreuer: Jochen Wambach ; Michael Buballa". Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2013. http://nbn-resolving.de/urn:nbn:de:tuda-tuprints-34836.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Li, Anyi. "STUDY OF QCD CRITICAL POINT USING CANONICAL ENSEMBLE METHOD". UKnowledge, 2009. http://uknowledge.uky.edu/gradschool_diss/756.

Pełny tekst źródła
Streszczenie:
QCD at non-zero baryon density is expected to have a critical point where the finite temperature crossover at zero density turns into a first order phase transition. To identify this point, we use the canonical ensemble approach to scan the temperaturedensity plane through lattice QCD simulations with Wilson-type fermions. In order to scan a wide range of the phase diagram, we develop an algorithm, the ”winding number expansion method” (WNEM) to fix the numerical instability problem due to the discrete Fourier transform for calculating the projected determinant. For a given temperature, we measure the chemical potential as a function of the baryon number and look for the signal of a first order phase transition. We carry out simulations using clover fermions with mπ ≈ 800MeV on 63 × 4 lattices. As a benchmark, we run simulations for the four degenerate flavor case where we observe a clear signal of the first order phase transition. In the two flavor case we do not see any signal for temperatures as low as 0.83 Tc. To gauge the discretization errors, we also run a set of simulations using Wilson fermions and compare the results to those from the clover fermion. The three flavor case is close to realistic QCD with two light u and d quarks and one heavier s quark. Any hint of the existence of the first order phase transition and, particularly, its critical end point will be valuable for the planned relativistic heavy-ion experiments to search for such a point. In the three flavor case we found a clear signal for the first order phase transition, the critical point is located at a temperature of 0.93(2) Tc and a baryon chemical potential of 3.25(7) Tc. Since the quark mass in our present simulation is relatively heavy, we would like to repeat it with lighter quark masses and larger volumes.
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Finite density QCD"

1

Barbour, I. M. "Lattice QCD at Finite Density". W NATO ASI Series, 1–9. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1909-2_1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Gürsoy, Umut. "Improved Holographic QCD at Finite Density". W SpringerBriefs in Physics, 65–69. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-79599-3_7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Ding, H. T., W. J. Fu, F. Gao, M. Huang, X. G. Huang, F. Karsch, J. F. Liao i in. "QCD Phase Structure at Finite Baryon Density". W Properties of QCD Matter at High Baryon Density, 1–75. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-4441-3_1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Karsch, Frithjof. "QCD at Finite Temperature and Baryon Number Density". W NATO ASI Series, 1–14. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2231-3_1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Karsch, Frithjof. "The Monomer-Dimer Algorithm and QCD at Finite Density". W Probabilistic Methods in Quantum Field Theory and Quantum Gravity, 199–208. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4615-3784-7_13.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Xu, Nu. "Exploration of the QCD Phase Diagram at Finite Baryon Density Region: Recent Results from RHIC Beam Energy Scan-I". W XXII DAE High Energy Physics Symposium, 1–5. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73171-1_1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Mallik, S. "QCD sum rules at finite temperature and density". W Quark Confinement and the Hadron Spectrum IV, 349–52. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812778567_0050.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

BITTNER, E., M. P. LOMBARDO, H. MARKUM i R. PULLIRSCH. "EIGENVALUES OF THE QCD DIRAC OPERATOR AT FINITE TEMPERATURE AND DENSITY". W Quark Confinement and the Hadron Spectrum IV, 353–56. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812778567_0051.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Finite density QCD"

1

LUO, XIANG-QIAN, ERIC B. GREGORY, SHUO-HONG GUO i HELMUT KRÖGER. "QCD AT FINITE DENSITY". W Proceedings of the International Workshop. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812811370_0015.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Gupta, Sourendu. "QCD at finite density". W The XXVIII International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2011. http://dx.doi.org/10.22323/1.105.0007.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Schmidt, Christian. "Lattice QCD at finite density". W XXIVth International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2006. http://dx.doi.org/10.22323/1.032.0021.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

de Forcrand, Philippe. "Simulating QCD at finite density". W The XXVII International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2010. http://dx.doi.org/10.22323/1.091.0010.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Nakamura, Atsushi, Masatoshi Hamada, Shinji Motoki, Takayuki Saito i Tetsuya Takaishi. "Finite Density QCD with Wilson Fermions". W The XXVI International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2009. http://dx.doi.org/10.22323/1.066.0190.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Conradi, Simone, Alessio D'Alessandro, Massimo D'Elia, Pietro Colangelo, Donato Creanza, Fulvia De Fazio, Rosa Anna Fini, Eugenio Nappi i Giuseppe Nardulli. "Confining properties in finite density QCD". W QCD&WORK 2007: International Workshop on Quantum Chromodynamics: Theory and Experiment. AIP, 2007. http://dx.doi.org/10.1063/1.2823873.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Sexty, Denes. "New algorithms for finite density QCD". W The 32nd International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2015. http://dx.doi.org/10.22323/1.214.0016.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Hanada, Masanori. "Relationship between QCD and QCD-Like Theories at Finite Density". W Proceedings of the KMI Inauguration Conference. WORLD SCIENTIFIC, 2013. http://dx.doi.org/10.1142/9789814412322_0026.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Li, Anyi. "Reweighting method in finite density lattice QCD". W XXIVth International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2006. http://dx.doi.org/10.22323/1.032.0030.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Kratochvila, Slavo, i Philippe de Forcrand. "The canonical approach to Finite Density QCD". W XXIIIrd International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2005. http://dx.doi.org/10.22323/1.020.0167.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Finite density QCD"

1

Kogut, J. B., M. P. Lombardo i D. K. Sinclair. Quenched QCD at finite density. Office of Scientific and Technical Information (OSTI), styczeń 1994. http://dx.doi.org/10.2172/10150630.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

BLUM, T., M. CREUTZ i P. PETRECZKY. LATTICE QCD AT FINITE TEMPERATURE AND DENSITY. Office of Scientific and Technical Information (OSTI), luty 2004. http://dx.doi.org/10.2172/15006985.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii