Gotowa bibliografia na temat „FIELD EMISSION OF CNT”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „FIELD EMISSION OF CNT”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "FIELD EMISSION OF CNT"
Liao, Qin Liang, Yue Zhang, Yun Hua Huang, Jun Jie Qi i Zheng Zhang. "Investigation on the Plasma-Induced Electron Emission Properties of ZnO Nanorod and Carbon Nanotube Arrays". Materials Science Forum 654-656 (czerwiec 2010): 1150–53. http://dx.doi.org/10.4028/www.scientific.net/msf.654-656.1150.
Pełny tekst źródłaLiu, Xingzhen, Weijin Qian, Yawei Chen, Mingliang Dong, Taxue Yu, Weijun Huang i Changkun Dong. "Construction of CNT-MgO-Ag-BaO Nanocomposite with Enhanced Field Emission and Hydrogen Sensing Performances". Nanomaterials 13, nr 5 (27.02.2023): 885. http://dx.doi.org/10.3390/nano13050885.
Pełny tekst źródłaHe, Hao, Chao Yuan, Er Jun Liang i Shun Fang Li. "Field Emission of Gallium-Doped Carbon Nanotubes". Advanced Materials Research 535-537 (czerwiec 2012): 61–66. http://dx.doi.org/10.4028/www.scientific.net/amr.535-537.61.
Pełny tekst źródłaStępińska, Izabela, Elżbieta Czerwosz, Mirosław Kozłowski, Halina Wronka i Piotr Dłużewski. "Studies of field emission process influence on changes in CNT films with different CNT superficial density". Materials Science-Poland 36, nr 1 (18.05.2018): 27–33. http://dx.doi.org/10.1515/msp-2018-0001.
Pełny tekst źródłaWang, M. S., Jan Yong Wang, C. H. Jin, Qing Chen i Lian Mao Peng. "Observations of Carbon Nanotube Field Emission Failure in the Transmission Electron Microscope". Materials Science Forum 475-479 (styczeń 2005): 4071–76. http://dx.doi.org/10.4028/www.scientific.net/msf.475-479.4071.
Pełny tekst źródłaFairchild, Steven B., Chelsea E. Amanatides, Thiago A. de Assis, Paul T. Murray, Dmitri Tsentalovich, Jeffrey L. Ellis, Salvador Portillo i in. "Field emission cathodes made from knitted carbon nanotube fiber fabrics". Journal of Applied Physics 133, nr 9 (7.03.2023): 094302. http://dx.doi.org/10.1063/5.0123120.
Pełny tekst źródłaLi, Hui, Xiao Gang Zhou, Chao Yuan i Gen Sheng Dou. "Experimental Preparation and Properties of Modified CNT Field Emitters for the Field Emission Display Panel". Advanced Materials Research 148-149 (październik 2010): 1327–30. http://dx.doi.org/10.4028/www.scientific.net/amr.148-149.1327.
Pełny tekst źródłaWu, Chao, i Xiao Feng Jin. "Optimization Design and Fabrication of Annular Field Emitter for Field Emission Display Panel". Key Engineering Materials 467-469 (luty 2011): 1520–23. http://dx.doi.org/10.4028/www.scientific.net/kem.467-469.1520.
Pełny tekst źródłaLim, Yu Dian, Liangxing Hu, Xin Xia, Zishan Ali, Shaomeng Wang, Beng Kang Tay, Sheel Aditya i Jianmin Miao. "Field emission properties of SiO2-wrapped CNT field emitter". Nanotechnology 29, nr 1 (29.11.2017): 015202. http://dx.doi.org/10.1088/1361-6528/aa96ed.
Pełny tekst źródłaWu, Chao, Wen Sheng Xing i Yu Kui Li. "Field Emission Characteristics of FED with Carbon Nanotube Field Emitters Using Improved Cathode Electrode". Advanced Materials Research 148-149 (październik 2010): 1315–18. http://dx.doi.org/10.4028/www.scientific.net/amr.148-149.1315.
Pełny tekst źródłaRozprawy doktorskie na temat "FIELD EMISSION OF CNT"
Parmee, Richard. "X-ray generation by field emission". Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/284924.
Pełny tekst źródłaChristy, Larry A. "Field Emission Properties of Carbon Nanotube Fibers and Sheets for a High Current Electron Source". University of Cincinnati / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1406819279.
Pełny tekst źródłaNavitski, Aliaksandr [Verfasser]. "Scanning field emission investigations of structured CNT and MNW cathodes, niobium surfaces and photocathodes / Aliaksandr Navitski". Wuppertal : Universitätsbibliothek Wuppertal, 2010. http://d-nb.info/1009494678/34.
Pełny tekst źródłaAhmed, Muhammad Shafiq. "Characterization of carbon nanotubes grown by chemical vapour deposition". Thesis, UOIT, 2009. http://hdl.handle.net/10155/26.
Pełny tekst źródłaFrench, Paul Jacob. "High-sensitivity field emission magnetometers and other applications of field emission technologies". Thesis, University College London (University of London), 2008. http://discovery.ucl.ac.uk/1443981/.
Pełny tekst źródłaHong, Ching-yin 1973. "Intelligent field emission arrays". Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/17037.
Pełny tekst źródłaIncludes bibliographical references (p. 289-301).
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Field emission arrays (FEAs) have been studied extensively as potential electron sources for a number of vacuum microelectronic device applications. For most applications, temporal current stability and spatial current uniformity are major concerns. Using the kinetic model of electron emission, field emission can be described as two sequential processes- the flux of electrons to the tip surface followed by the transmission of the electrons through the surface barrier. Either of these processes could be the determinant of the emission current. Unstable emission current is usually due to absorption/desorption of gas molecules on the tip surface (barrier height variation) and non-uniform emission is usually due to tip radius variation (barrier width change). These problems could be solved if the emission current is determined by the electron supply to the surface instead of the electron transmission through the surface barrier. In this thesis, we used the inversion layer of a MOSFET to control the electron supply. It results in additional benefits of low turn-on voltage and low voltage swing to turn the device on and off. A novel CMP-based process for fabricating integrated LD-MOSFET/FEA is presented. We obtained FEA devices with an extraction gate aperture of 1.3 [mu]m and emitter height of 1 [mu]m. We present a comprehensive study of field emitter arrays with or without MOSFET. The silicon field emitter shows turn-on voltage of [approximately]24 V with field enhancement factor (b[sub]FN) of [approximately]370. We demonstrated that the LD-MOSFET provides excellent control of emission current. The threshold voltage of the LD-MOSFET is [approximately]0.5V. The integrated device can be switched ON and OFF using a MOSFET gate voltage swing of 0.5V. This results in an ON/OFF current ratio of 1000:1. The current fluctuation is significantly reduced when the MOSFET is integrated with the FEA device and the device is operated in the MOSFET control regime. The emission current of the integrated LD-MOSFET/FEA remains stable regardless the gas and vacuum condition. The saturation current level of the integrated devices in the MOSFET controlled region is also the same regardless the emitter array size or the FEA's position on the wafer. We also present a comprehensive study of three-dimensional oxidation in silicon emitter tip
(cont.) formation. Stress plays an important role in the oxidation mechanism. A new sharp emitter tip formation mechanism is proposed: rather than a continuous oxidation process, an emitter neck breaking stage occurs before the sharp emitter tip is formed. Stress from volume difference of silicon and silicon dioxide is the main cause for the emitter neck breaking. Initial formation of microcracks around the neck occurs at high temperature due to volume difference stress, oxide grows into the cracks right after crack formation, and a sharp emitter tip is then formed by further oxidation.
by Ching-yin Hong.
Ph.D.
Ding, Meng 1972. "Field emission from silicon". Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/8645.
Pełny tekst źródłaIncludes bibliographical references (p. 259-275).
A field emitter serves as a cold source of electrons. It has practical applications in various fields such as field emission flat panel displays, multiple electron-beam lithography, ion propulsion/micro-thrusters, radio frequency source, information storage technology, and electronic cooling. Silicon is an attractive material for building electron field emitters. To understand the physics of electron field emission from silicon and to push technologies of making quality field emitter arrays present both opportunities and challenges. This work focuses on an experimental study of electron field emission phenomena from silicon field emitter arrays. We demonstrate electron field emission from both the conduction band and the valence band of silicon simultaneously. A two-band field emission model is presented to explain the experimental data. Theoretical predictions for valence band emission were made in the past; however there was no direct observation until now. Experimental evidence of current saturation in field emission existed in the literature. We also report the observation of current saturation in n-type silicon field emitter arrays. A simple model is presented to account for the results. We report successfully fabricating 1/,m gate-aperture silicon field emitter arrays with a turn-on voltage as low as 14 V. The gate leakage current is observed to be less than 0.01% of the total emission current. Devices show excellent emission uniformity for different sized arrays. The low turn-on voltage is attributed to the small emitter tip radius. It was achieved by isotropic etching of silicon and low temperature oxidation sharpening of the emitter tips.
(cont.) Field emitters with a tip radius of about 10nm can be routinely obtained. Optimization of the oxidation sharpening process further reduced the tip radius to be around lnm. The results were confirmed by Transmission Electron Microscopy (TEM). Device characterization showed agreement with Fowler-Nordheim theory. Analytical and numerical models were introduced to account for the experimental results. We also demonstrate the successful fabrication of the high aspect ratio silicon tip field emitter arrays. Silicon emitters as high as 5-6[mu]m with an aspect ratio larger than 10:1 was achieved in our facilities. Furthermore we have also successfully fabricated and tested the fully gated high aspect ratio field emitter arrays. The experimental current-voltage data agree well with the Fowler-Nordheim theory. A Maxwell Stress Microscope, which is capable of imaging sample topography and the surface potential simultaneously is set up and tested for the purpose of further study of the properties of the surfaces of the silicon field emitters.
by Meng Ding.
Ph.D.
Poa, Chun Hwa Patrick. "Electron field emission from carbons and their emission mechanism". Thesis, University of Surrey, 2002. http://epubs.surrey.ac.uk/842670/.
Pełny tekst źródłaLaou, Philips. "Field emission devices on silicon". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0001/NQ44486.pdf.
Pełny tekst źródłaBoswell, Emily. "Field emission from porous silicon". Thesis, University of Oxford, 1997. http://ora.ox.ac.uk/objects/uuid:a4344196-7fc2-4713-b47b-85920b137759.
Pełny tekst źródłaKsiążki na temat "FIELD EMISSION OF CNT"
Egorov, Nikolay, i Evgeny Sheshin. Field Emission Electronics. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56561-3.
Pełny tekst źródłaGomer, Robert. Field emission and field ionization. New York: American Institute of Physics, 1993.
Znajdź pełny tekst źródłaGomer, R. Field emission and field ionization. New York: American Institute of Physics, 1993.
Znajdź pełny tekst źródłaBhattacharya, Sitangshu, i Kamakhya Prasad Ghatak. Fowler-Nordheim Field Emission. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-20493-7.
Pełny tekst źródłaMesi︠a︡t︠s︡, G. A. Explosive electron emission. Ekaterinburg: URO-Press, 1998.
Znajdź pełny tekst źródłaBrodusch, Nicolas, Hendrix Demers i Raynald Gauvin. Field Emission Scanning Electron Microscopy. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-4433-5.
Pełny tekst źródłaBrodie, Ivor, i Paul Schwoebel, red. Field Emission in Vacuum Microelectronics. Boston, MA: Springer US, 2005. http://dx.doi.org/10.1007/b139052.
Pełny tekst źródłaField emission in vacuum microelectronics. New York: Kluwer Academic/Plenum Publishers, 2003.
Znajdź pełny tekst źródłaFursey, George. Field emission in vacuum microelectronics. New York, NY: Kluwer Academic/Plenum Publishers, 2004.
Znajdź pełny tekst źródłaFleck, Roland A., i Bruno M. Humbel. Biological Field Emission Scanning Electron Microscopy. Chichester, UK: John Wiley & Sons, Ltd, 2019. http://dx.doi.org/10.1002/9781118663233.
Pełny tekst źródłaCzęści książek na temat "FIELD EMISSION OF CNT"
Ohkawa, Yasushi. "CNT Field-Emission Cathode for Space Applications". W Nanostructured Carbon Electron Emitters and Their Applications, 315–30. New York: Jenny Stanford Publishing, 2021. http://dx.doi.org/10.1201/9781003141990-15.
Pełny tekst źródłaGlauvitz, Nathan E., Ronald A. Coutu, Peter J. Collins i LaVern A. Starman. "Etching Silicon Dioxide for CNT Field Emission Device". W MEMS and Nanotechnology, Volume 6, 93–99. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-4436-7_14.
Pełny tekst źródłaSaito, Yahachi. "Emission of C+20 by Field Evaporation from CNT". W Nanostructured Carbon Electron Emitters and Their Applications, 343–50. New York: Jenny Stanford Publishing, 2021. http://dx.doi.org/10.1201/9781003141990-17.
Pełny tekst źródłaSinha, N., D. Roy Mahapatra, R. V. N. Melnik i J. T. W. Yeow. "Computational Implementation of a New Multiphysics Model for Field Emission from CNT Thin Films". W Computational Science – ICCS 2008, 197–206. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-69387-1_22.
Pełny tekst źródłaAsaka, Koji, i Yahachi Saito. "Growth of Long Linear Carbon Chains after Serious Field Emission from a CNT Film". W Nanostructured Carbon Electron Emitters and Their Applications, 331–42. New York: Jenny Stanford Publishing, 2021. http://dx.doi.org/10.1201/9781003141990-16.
Pełny tekst źródłaHiramatsu, Mineo, i Masaru Hori. "Field Emission". W Carbon Nanowalls, 117–29. Vienna: Springer Vienna, 2010. http://dx.doi.org/10.1007/978-3-211-99718-5_6.
Pełny tekst źródłaSaito, Yahachi. "Preparation of CNT Emitters". W Carbon Nanotube and Related Field Emitters, 15–21. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527630615.ch2.
Pełny tekst źródłaTonegawa, Takeshi, Masateru Taniguchi i Shigeo Itoh. "Transparent-Like CNT-FED". W Carbon Nanotube and Related Field Emitters, 333–41. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527630615.ch21.
Pełny tekst źródłaNakayama, Yoshikazu. "Surface Coating of CNT Emitters". W Carbon Nanotube and Related Field Emitters, 163–75. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527630615.ch12.
Pełny tekst źródłaMann, Mark, William Ireland Milne i Kenneth Boh Khin Teo. "Preparation of Patterned CNT Emitters". W Carbon Nanotube and Related Field Emitters, 23–40. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527630615.ch3.
Pełny tekst źródłaStreszczenia konferencji na temat "FIELD EMISSION OF CNT"
Anand, Sandeep V., D. Roy Mahapatra, Niraj Sinha, J. T. W. Yeow i R. V. N. Melnik. "Field Emission Efficiency of a Carbon Nanotube Array Under Parasitic Nonlinearities". W ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-39558.
Pełny tekst źródłaCalderón-Colón, Xiomara, i Otto Zhou. "Development of Carbon Nanotube Field Emitters for X-Ray Source". W ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-175998.
Pełny tekst źródłaLim, Yu Dian, Alexander Avramchuck, Dmitry Grapov, Beng Kang Tay, Sheel Aditya i Vladimir Labunov. "Field emission characteristics of short CNT bundles". W 2016 IEEE International Vacuum Electronics Conference (IVEC). IEEE, 2016. http://dx.doi.org/10.1109/ivec.2016.7561783.
Pełny tekst źródłaJian Zhang, Yangyang Zhao, Yongjun Cheng, Detian Li i Changkun Dong. "CNT field emission based ultra-high vacuum measurements". W 2015 28th International Vacuum Nanoelectronics Conference (IVNC). IEEE, 2015. http://dx.doi.org/10.1109/ivnc.2015.7225574.
Pełny tekst źródłaLu, Wenhui, Hang Song, Haifeng Zhao, Hui zhao, Zhiming Li, Hong Jiang, Guoqing Mao i Yixin Jin. "Experiment Study on Planar-Gate Electron Source with CNT". W 2006 19th International Vacuum Nanoelectronics Conference and 50th International Field Emission Symposium. IEEE, 2006. http://dx.doi.org/10.1109/ivnc.2006.335375.
Pełny tekst źródłaHan, Jun Soo, Sang Heon Lee, Han Bin Go, Cheol Jin Lee i Yoon-Ho Song. "Field emission characteristics of CNT film emitters according to emission tip shapes". W 2018 31st International Vacuum Nanoelectronics Conference (IVNC). IEEE, 2018. http://dx.doi.org/10.1109/ivnc.2018.8520061.
Pełny tekst źródłaYang, Zhan, Masahiro Nakajima, Yajing Shen, Pengbo Wang, Changhai Ru, Yahua Zhang, Lining Sun i Toshio Fukuda. "Test of A CNT gyroscope based on field emission". W 2013 IEEE 7th International Conference on Nano/Molecular Medicine and Engnieering (NANOMED). IEEE, 2013. http://dx.doi.org/10.1109/nanomed.2013.6766316.
Pełny tekst źródłaStępińska, Izabela, Halina Wronka, Stanisław Waszuk, Joanna Radomska, Mirosław Kozłowski, Elżbieta Czerwosz i Florea Craciunoiu. "Field emission from CNT films deposited on porous Si". W XXXVI Symposium on Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments (Wilga 2015), redaktor Ryszard S. Romaniuk. SPIE, 2015. http://dx.doi.org/10.1117/12.2205844.
Pełny tekst źródłaLiu, Weihua, i Changchun Zhu. "Field Emission Aging Characteristic of Screen Printed CNT Cathode". W 2006 19th International Vacuum Nanoelectronics Conference. IEEE, 2006. http://dx.doi.org/10.1109/ivnc.2006.335480.
Pełny tekst źródłaHan, Jun Soo, Ki Nam Yun, Sang Heon Lee, Han Bin Go, Cheol Jin Lee i Yoon-Ho Song. "Field emission properties of triode structure CNT film emitter". W 2017 30th International Vacuum Nanoelectronics Conference (IVNC). IEEE, 2017. http://dx.doi.org/10.1109/ivnc.2017.8051593.
Pełny tekst źródłaRaporty organizacyjne na temat "FIELD EMISSION OF CNT"
Piestrup, Melvin A., Harold E. Puthoff i Paul J. Ebert. Enhanced correlated-Charge Field Emission. Fort Belvoir, VA: Defense Technical Information Center, luty 1998. http://dx.doi.org/10.21236/ada337858.
Pełny tekst źródłaBoyd, J. K., i V. K. Neil. Electron beam brightness with field immersed emission. Office of Scientific and Technical Information (OSTI), grudzień 1985. http://dx.doi.org/10.2172/6369432.
Pełny tekst źródłaLee, Bo. A knife-edge array field emission cathode. Office of Scientific and Technical Information (OSTI), sierpień 1994. http://dx.doi.org/10.2172/515571.
Pełny tekst źródłaRinzler, A. G., J. H. Hafner, P. Nilolaev, D. T. Colbert i R. E. Smalley. Field emission and growth of fullerene nanotubes. Office of Scientific and Technical Information (OSTI), listopad 1994. http://dx.doi.org/10.2172/650265.
Pełny tekst źródłaAng, Lay-Kee. Modeling of Electron Field Emission from Graphene. Fort Belvoir, VA: Defense Technical Information Center, grudzień 2011. http://dx.doi.org/10.21236/ada552737.
Pełny tekst źródłaThangaraj, Charles. Gated Field-Emission Cathode Radio-Frequency (RF) Gun. Office of Scientific and Technical Information (OSTI), listopad 2016. http://dx.doi.org/10.2172/1433861.
Pełny tekst źródłaOhlinger, Wayne L., i D. N. Hill. Field Emission Cathode and Vacuum Microelectronic Microwave Amplifier Development. Fort Belvoir, VA: Defense Technical Information Center, marzec 1992. http://dx.doi.org/10.21236/ada253846.
Pełny tekst źródłaOhlinger, Wayne L., i D. N. Hill. Field Emission Cathode and Vacuum Microelectronic Microwave Amplifier Development. Fort Belvoir, VA: Defense Technical Information Center, marzec 1992. http://dx.doi.org/10.21236/ada253847.
Pełny tekst źródłaJay L. Hirshfield. Rf Gun with High-Current Density Field Emission Cathode. Office of Scientific and Technical Information (OSTI), grudzień 2005. http://dx.doi.org/10.2172/861455.
Pełny tekst źródłaBussmann, Ezra, Taisuke Ohta, Barbara Kazanowska, George Wang i Rajan Tandon. Stronger field-emission science via coupling novel nanoscale imaging techniques. Office of Scientific and Technical Information (OSTI), wrzesień 2020. http://dx.doi.org/10.2172/1670519.
Pełny tekst źródła