Artykuły w czasopismach na temat „Field Cycling NMR”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Field Cycling NMR.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Field Cycling NMR”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Kimmich, Rainer, i Esteban Anoardo. "Field-cycling NMR relaxometry". Progress in Nuclear Magnetic Resonance Spectroscopy 44, nr 3-4 (lipiec 2004): 257–320. http://dx.doi.org/10.1016/j.pnmrs.2004.03.002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Kresse, B., A. F. Privalov i F. Fujara. "NMR field-cycling at ultralow magnetic fields". Solid State Nuclear Magnetic Resonance 40, nr 4 (listopad 2011): 134–37. http://dx.doi.org/10.1016/j.ssnmr.2011.10.002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Blanz, M., T. J. Rayner i J. A. S. Smith. "A fast field-cycling NMR/NQR spectrometer". Measurement Science and Technology 4, nr 1 (1.01.1993): 48–59. http://dx.doi.org/10.1088/0957-0233/4/1/009.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Anoardo, E., G. Galli i G. Ferrante. "Fast-field-cycling NMR: Applications and instrumentation". Applied Magnetic Resonance 20, nr 3 (kwiecień 2001): 365–404. http://dx.doi.org/10.1007/bf03162287.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Miesel, K., K. L. Ivanov, A. V. Yurkovskaya i H. M. Vieth. "Coherence transfer during field-cycling NMR experiments". Chemical Physics Letters 425, nr 1-3 (lipiec 2006): 71–76. http://dx.doi.org/10.1016/j.cplett.2006.05.025.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Schauer, G., W. Nusser, M. Blanz i R. Kimmich. "NMR field cycling with a superconducting magnet". Journal of Physics E: Scientific Instruments 20, nr 1 (styczeń 1987): 43–46. http://dx.doi.org/10.1088/0022-3735/20/1/007.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Pine, Kerrin J., Gareth R. Davies i David J. Lurie. "Field-cycling NMR relaxometry with spatial selection". Magnetic Resonance in Medicine 63, nr 6 (23.04.2010): 1698–702. http://dx.doi.org/10.1002/mrm.22346.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

NOACK, F., ST BECKER i J. STRUPPE. "ChemInform Abstract: Applications of Field-Cycling NMR". ChemInform 28, nr 44 (3.08.2010): no. http://dx.doi.org/10.1002/chin.199744350.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Bielecki, A., D. B. Zax, A. M. Thayer, J. M. Millar i A. Pines. "Time Domain Zero Field NMR and NQR". Zeitschrift für Naturforschung A 41, nr 1-2 (1.02.1986): 440–44. http://dx.doi.org/10.1515/zna-1986-1-286.

Pełny tekst źródła
Streszczenie:
Field cycling methods are described for the time domain measurement of nuclear quadrupolar and dipolar spectra in zero applied field. Since these techniques do not involve irradiation in zero field, they offer significant advantages in terms of resolution, sensitivity at low frequency, and the accessible range of spin lattice relaxation times. Sample data are shown which illustrate the high sensitivity and resolution attainable. Comparison is made to other field cycling methods, and an outline of basic instrumental requirements is given.
Style APA, Harvard, Vancouver, ISO itp.
10

Zhukov, Ivan V., Alexey S. Kiryutin, Alexandra V. Yurkovskaya, Yuri A. Grishin, Hans-Martin Vieth i Konstantin L. Ivanov. "Field-cycling NMR experiments in an ultra-wide magnetic field range: relaxation and coherent polarization transfer". Physical Chemistry Chemical Physics 20, nr 18 (2018): 12396–405. http://dx.doi.org/10.1039/c7cp08529j.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Haber-Pohlmeier, S., S. Stapf i A. Pohlmeier. "NMR Fast Field Cycling Relaxometry of Unsaturated Soils". Applied Magnetic Resonance 45, nr 10 (październik 2014): 1099–115. http://dx.doi.org/10.1007/s00723-014-0599-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Noack, F. "NMR field-cycling spectroscopy: principles and a]lications". Progress in Nuclear Magnetic Resonance Spectroscopy 18, nr 3 (styczeń 1986): 171–276. http://dx.doi.org/10.1016/0079-6565(86)80004-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Reutter, S., A. Privalov, G. Buntkowsky i F. Fujara. "Rotational Resonance in milli-tesla fields detected by Field Cycling NMR". Solid State Nuclear Magnetic Resonance 41 (luty 2012): 74–77. http://dx.doi.org/10.1016/j.ssnmr.2011.12.003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Gizatullin, Bulat, Carlos Mattea i Siegfried Stapf. "Field-cycling NMR and DNP – A friendship with benefits". Journal of Magnetic Resonance 322 (styczeń 2021): 106851. http://dx.doi.org/10.1016/j.jmr.2020.106851.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Grossl, C., F. Winter i R. Kimmich. "Optimisation of magnetic coils for NMR field-cycling experiments". Journal of Physics E: Scientific Instruments 18, nr 4 (kwiecień 1985): 358–60. http://dx.doi.org/10.1088/0022-3735/18/4/024.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Hall, Andrew M. R., Topaz A. A. Cartlidge i Giuseppe Pileio. "A temperature-controlled sample shuttle for field-cycling NMR". Journal of Magnetic Resonance 317 (sierpień 2020): 106778. http://dx.doi.org/10.1016/j.jmr.2020.106778.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Nusser, Wolfgang, i Rainer Kimmich. "Protein backbone fluctuations and NMR field-cycling relaxation spectroscopy". Journal of Physical Chemistry 94, nr 15 (lipiec 1990): 5637–39. http://dx.doi.org/10.1021/j100378a001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Kruk, D., A. Herrmann i E. A. Rössler. "Field-cycling NMR relaxometry of viscous liquids and polymers". Progress in Nuclear Magnetic Resonance Spectroscopy 63 (maj 2012): 33–64. http://dx.doi.org/10.1016/j.pnmrs.2011.08.001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Erro, E. M., C. C. Fraenza, L. Gerbino i E. Anoardo. "Monitoring lubricant oil degradation using field-cycling NMR relaxometry". Molecular Physics 117, nr 7-8 (15.11.2018): 983–89. http://dx.doi.org/10.1080/00268976.2018.1546023.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Anoardo, E., G. Galli i G. Ferrante. "ChemInform Abstract: Fast-field-cycling NMR: Applications and Instrumentation." ChemInform 33, nr 10 (22.05.2010): no. http://dx.doi.org/10.1002/chin.200210280.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Broche, Lionel M., Saadiya R. Ismail, Nuala A. Booth i David J. Lurie. "Measurement of fibrin concentration by fast field-cycling NMR". Magnetic Resonance in Medicine 67, nr 5 (24.10.2011): 1453–57. http://dx.doi.org/10.1002/mrm.23117.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Galuppini, Giacomo, Roberto Rolfi, Chiara Toffanin, Davide Raimondo, Yong Xia, Gianni Ferrante i Lalo Magni. "Towards a Model-Based Field-Frequency Lock for Fast-Field Cycling NMR". Applied Magnetic Resonance 50, nr 8 (15.06.2019): 1025–47. http://dx.doi.org/10.1007/s00723-019-01130-y.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Anoardo, E., i G. M. Ferrante. "Magnetic field compensation for field-cycling NMR Relaxometry in the ULF band". Applied Magnetic Resonance 24, nr 1 (marzec 2003): 85–96. http://dx.doi.org/10.1007/bf03166680.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Reutter, Stefan, i Alexei Privalov. "Compensation of Magnetic Field Instabilities in Field Cycling NMR by Reference Deconvolution". Applied Magnetic Resonance 44, nr 1-2 (5.10.2012): 55–63. http://dx.doi.org/10.1007/s00723-012-0396-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Roberts, Mary F., Jingfei Cai, Sivanandam V. Natarajan, Hanif M. Khan, Nathalie Reuter, Anne Gershenson i Alfred G. Redfield. "Phospholipids in Motion: High-Resolution 31P NMR Field Cycling Studies". Journal of Physical Chemistry B 125, nr 31 (29.07.2021): 8827–38. http://dx.doi.org/10.1021/acs.jpcb.1c02105.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Parigi, Giacomo, Enrico Ravera, Marco Fragai i Claudio Luchinat. "Unveiling protein dynamics in solution with field-cycling NMR relaxometry". Progress in Nuclear Magnetic Resonance Spectroscopy 124-125 (czerwiec 2021): 85–98. http://dx.doi.org/10.1016/j.pnmrs.2021.05.001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Perrin, Jean-Christophe, Sandrine Lyonnard, Armel Guillermo i Pierre Levitz. "Water Dynamics in Ionomer Membranes by Field-Cycling NMR Relaxometry". Journal of Physical Chemistry B 110, nr 11 (marzec 2006): 5439–44. http://dx.doi.org/10.1021/jp057433e.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Satheesh, V., i G. Ferrante. "Application of fast field cycling NMR relaxometer to porous media". Magnetic Resonance Imaging 19, nr 3-4 (kwiecień 2001): 591. http://dx.doi.org/10.1016/s0730-725x(01)00366-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Perrin, Jean-Christophe, Sandrine Lyonnard, Armel Guillermo i Pierre Levitz. "Water dynamics in ionomer membranes by field-cycling NMR relaxometry". Magnetic Resonance Imaging 25, nr 4 (maj 2007): 501–4. http://dx.doi.org/10.1016/j.mri.2007.01.002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Flämig, M., M. Hofmann i E. A. Rössler. "Field-cycling NMR relaxometry: the benefit of constructing master curves". Molecular Physics 117, nr 7-8 (16.09.2018): 877–87. http://dx.doi.org/10.1080/00268976.2018.1517906.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Elliott, Stuart J., Pavel Kadeřávek, Lynda J. Brown, Mohamed Sabba, Stefan Glöggler, Daniel J. O'Leary, Richard C. D. Brown, Fabien Ferrage i Malcolm H. Levitt. "Field-cycling long-lived-state NMR of 15N2 spin pairs". Molecular Physics 117, nr 7-8 (8.11.2018): 861–67. http://dx.doi.org/10.1080/00268976.2018.1543906.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Barker, Peter, i Ray Freeman. "Pulsed field gradients in NMR. An alternative to phase cycling". Journal of Magnetic Resonance (1969) 64, nr 2 (wrzesień 1985): 334–38. http://dx.doi.org/10.1016/0022-2364(85)90360-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Steele, Rebecca M., Jean-Pierre Korb, Gianni Ferrante i Salvatore Bubici. "New applications and perspectives of fast field cycling NMR relaxometry". Magnetic Resonance in Chemistry 54, nr 6 (9.04.2015): 502–9. http://dx.doi.org/10.1002/mrc.4220.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Perrin, J. C., S. Lyonnard, A. Guillermo i P. Levitz. "Water Dynamics in Ionomer Membranes by Field-Cycling NMR Relaxometry". Fuel Cells 6, nr 1 (luty 2006): 5–9. http://dx.doi.org/10.1002/fuce.200500094.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Clarkson, Michael W., Ming Lei, Elan Z. Eisenmesser, Wladimir Labeikovsky, Alfred Redfield i Dorothee Kern. "Mesodynamics in the SARS nucleocapsid measured by NMR field cycling". Journal of Biomolecular NMR 45, nr 1-2 (30.07.2009): 217–25. http://dx.doi.org/10.1007/s10858-009-9347-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Conte, Pellegrino, i Paolo Lo Meo. "Nuclear Magnetic Resonance with Fast Field-Cycling Setup: A Valid Tool for Soil Quality Investigation". Agronomy 10, nr 7 (18.07.2020): 1040. http://dx.doi.org/10.3390/agronomy10071040.

Pełny tekst źródła
Streszczenie:
Nuclear magnetic resonance (NMR) techniques are largely employed in several fields. As an example, NMR spectroscopy is used to provide structural and conformational information on pure systems, while affording quantitative evaluation on the number of nuclei in a given chemical environment. When dealing with relaxation, NMR allows understanding of molecular dynamics, i.e., the time evolution of molecular motions. The analysis of relaxation times conducted on complex liquid–liquid and solid–liquid mixtures is directly related to the nature of the interactions among the components of the mixture. In the present review paper, the peculiarities of low resolution fast field-cycling (FFC) NMR relaxometry in soil science are reported. In particular, the general aspects of the typical FFC NMR relaxometry experiment are firstly provided. Afterwards, a discussion on the main mathematical models to be used to “read” and interpret experimental data on soils is given. Following this, an overview on the main results in soil science is supplied. Finally, new FFC NMR-based hypotheses on nutrient dynamics in soils are described
Style APA, Harvard, Vancouver, ISO itp.
37

Schweikert, K. H., R. Krieg i F. Noack. "A high-field air-cored magnet coil design for fast-field-cycling NMR". Journal of Magnetic Resonance (1969) 78, nr 1 (czerwiec 1988): 77–96. http://dx.doi.org/10.1016/0022-2364(88)90158-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Ivanov, Dmitri, i Alfred Redfield. "Development of a Field Cycling NMR System for PQR Detection in Biopolymers". Zeitschrift für Naturforschung A 53, nr 6-7 (1.07.1998): 269–72. http://dx.doi.org/10.1515/zna-1998-6-703.

Pełny tekst źródła
Streszczenie:
Abstract Our goal is to extend the sensitivity of field cycling pure quadrupole resonance (PQR) methods to be of use in biological systems. The nuclei of interest are 25Mg, 67Zn, 43Ca, 11B and 17O. The experiment is based on a field cycling double resonance technique, in which the quadrupole resonance of a rare nucleus is found through its effect on the magnetic order of the abundant nucleus to which the rare nucleus is coupled through dipole-dipole interaction. A field-cycling NMR spectrometer has been developed, based on our existing 500 MHz high resolution spectrometer. The sample can be shuttled pneumatically from the high field of a commercial 500 MHz magnet to the magnet's top, where the residual field and its gradient is canceled out by a pair of Helmholtz coils. Low field homogeneity is within 0.5 gauss. The X H signal is observed at high field as a free induction decay (FID) after a 90° pulse. At low field the sample can be irradiated by a digitally tuned RF coil in the 300 kHz-7 MHz range. The sample has to be maintained at low temperature (~30 K) to avoid relaxation via thermal motion of methyl groups in biomolecules. For this purpose field cycling equipment is placed in a variable temperature dewar (4 - 300 K). We plan to use solutions of biomolecules in standard cryoprotective buffer, containing ~ 30% glycerol. Preliminary results on the quadrupole resonance of natural abundance 17O in the cryoprotective buffer and of natural abundance 11B in a protease inhibitor at 50 mM are presented.
Style APA, Harvard, Vancouver, ISO itp.
39

Overbeck, Viviane, Henning Schröder, Anne-Marie Bonsa, Klaus Neymeyr i Ralf Ludwig. "Insights into the translational and rotational dynamics of cations and anions in protic ionic liquids by means of NMR fast-field-cycling relaxometry". Physical Chemistry Chemical Physics 23, nr 4 (2021): 2663–75. http://dx.doi.org/10.1039/d0cp05440b.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Cunha, Joao T., Pedro J. Sebastiao, António Roque, Vitor Vaz da Silva i Duarte M. Sousa. "Design Overview of a Toroidal Fast-Field Cycling electromagnet". Renewable Energy and Power Quality Journal 19 (wrzesień 2021): 368–72. http://dx.doi.org/10.24084/repqj19.296.

Pełny tekst źródła
Streszczenie:
In this paper, the design and development of a novel Fast-Field Cycling (FFC) Nuclear Magnetic Resonance (NMR) relaxometer’s electromagnet is described. This magnet is tailored to increase the relaxometers’s usability, by increasing its portability capacities. It presents a compact toroidal shaped iron core, allowing to operate in a field range of 0 to 0.21 T, with high field homogeneity (less than 800 ppm in a volume of ≈ 0.57 cm3 ), low power consumption and reduced losses (about 40W). The simulation software COMSOL Multiphysics® is used to characterize the induced magnetic field, the heating and the cooling effects. The proposed optimized layout constitutes an innovative solution for FFC magnets.
Style APA, Harvard, Vancouver, ISO itp.
41

Pizzanelli, Silvia, Susanna Monti, Larisa G. Gordeeva, Marina V. Solovyeva, Angelo Freni i Claudia Forte. "A close view of the organic linker in a MOF: structural insights from a combined 1H NMR relaxometry and computational investigation". Physical Chemistry Chemical Physics 22, nr 27 (2020): 15222–30. http://dx.doi.org/10.1039/d0cp01863e.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Murray, Eoin, Darren Carty, Peter C. Innis, Gordon G. Wallace i Dermot F. Brougham. "Field-Cycling NMR Relaxometry Study of Dynamic Processes in Conducting Polyaniline". Journal of Physical Chemistry C 112, nr 45 (17.10.2008): 17688–93. http://dx.doi.org/10.1021/jp8034902.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Roberts, Mary F., i Alfred G. Redfield. "High-Resolution31P Field Cycling NMR as a Probe of Phospholipid Dynamics". Journal of the American Chemical Society 126, nr 42 (październik 2004): 13765–77. http://dx.doi.org/10.1021/ja046658k.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Pravdivtsev, Andrey N., Alexandra V. Yurkovskaya, Hans-Martin Vieth i Konstantin L. Ivanov. "Coherent transfer of nuclear spin polarization in field-cycling NMR experiments". Journal of Chemical Physics 139, nr 24 (28.12.2013): 244201. http://dx.doi.org/10.1063/1.4848699.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Hofmann, M., B. Kresse, A. F. Privalov, L. Willner, N. Fatkullin, F. Fujara i E. A. Rössler. "Field-Cycling NMR Relaxometry Probing the Microscopic Dynamics in Polymer Melts". Macromolecules 47, nr 22 (12.11.2014): 7917–29. http://dx.doi.org/10.1021/ma501520u.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Roberts, M. F., i A. G. Redfield. "Phospholipid bilayer surface configuration probed quantitatively by 31P field-cycling NMR". Proceedings of the National Academy of Sciences 101, nr 49 (29.11.2004): 17066–71. http://dx.doi.org/10.1073/pnas.0407565101.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Fujara, Franz, Danuta Kruk i Alexei F. Privalov. "Solid state Field-Cycling NMR relaxometry: Instrumental improvements and new applications". Progress in Nuclear Magnetic Resonance Spectroscopy 82 (październik 2014): 39–69. http://dx.doi.org/10.1016/j.pnmrs.2014.08.002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Broche, L. M., B. W. Kennedy, C. MacEachern, G. P. Ashcroft i D. J. Lurie. "Fast field-cycling NMR of cartilage: a way toward molecular imaging". Osteoarthritis and Cartilage 22 (kwiecień 2014): S66—S67. http://dx.doi.org/10.1016/j.joca.2014.02.136.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Lee, Youngil, Daniel C. Michaels i Leslie G. Butler. "11B imaging with field-cycling NMR as a line narrowing technique". Chemical Physics Letters 206, nr 5-6 (maj 1993): 464–66. http://dx.doi.org/10.1016/0009-2614(93)80168-o.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Kresse, B., M. Hofmann, A. F. Privalov, N. Fatkullin, F. Fujara i E. A. Rössler. "All Polymer Diffusion Regimes Covered by Combining Field-Cycling and Field-Gradient 1H NMR". Macromolecules 48, nr 13 (24.06.2015): 4491–502. http://dx.doi.org/10.1021/acs.macromol.5b00855.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii