Gotowa bibliografia na temat „Fibre durability”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Fibre durability”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Fibre durability"
Liu, Yanzhu, Liang Wang, Ke Cao i Lei Sun. "Review on the Durability of Polypropylene Fibre-Reinforced Concrete". Advances in Civil Engineering 2021 (4.06.2021): 1–13. http://dx.doi.org/10.1155/2021/6652077.
Pełny tekst źródłaWang, Peng. "Research on the Design and Use of Structures and Components Made from Fibre Composite Materials". Applied Mechanics and Materials 174-177 (maj 2012): 782–86. http://dx.doi.org/10.4028/www.scientific.net/amm.174-177.782.
Pełny tekst źródłaMore, Florence More Dattu Shanker, i Senthil Selvan Subramanian. "Impact of Fibres on the Mechanical and Durable Behaviour of Fibre-Reinforced Concrete". Buildings 12, nr 9 (13.09.2022): 1436. http://dx.doi.org/10.3390/buildings12091436.
Pełny tekst źródłaAkbari Motlagh, Ali, i Ebrahim Mirzaei. "Effect of using Fibre on the Durability of Asphalt Pavement". Civil Engineering Journal 2, nr 2 (1.02.2016): 63–72. http://dx.doi.org/10.28991/cej-2016-00000013.
Pełny tekst źródłaSergi, Claudia, Jacopo Tirillò, Maria Carolina Seghini, Fabrizio Sarasini, Vincenzo Fiore i Tommaso Scalici. "Durability of Basalt/Hemp Hybrid Thermoplastic Composites". Polymers 11, nr 4 (2.04.2019): 603. http://dx.doi.org/10.3390/polym11040603.
Pełny tekst źródłaRajak, Manoj, i Baboo Rai. "Effect of Micro Polypropylene Fibre on the Performance of Fly Ash-Based Geopolymer Concrete". Journal of Applied Engineering Sciences 9, nr 1 (1.05.2019): 97–108. http://dx.doi.org/10.2478/jaes-2019-0013.
Pełny tekst źródłaBhat, Arooba Rafiq, i Ajay Vikram. "A Literature Study of Hybrid Fibre Reinforced Concrete". International Journal of Innovative Research in Engineering & Management 10, nr 1 (1.02.2023): 6–8. http://dx.doi.org/10.55524/ijirem.2023.10.1.2.
Pełny tekst źródłaMd Azree Othuman Mydin. "Thermal and Durability Properties of Sustainable Green Lightweight Foamed Concrete Incorporating Eco-Friendly Sugarcane Fibre". Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 94, nr 1 (19.04.2022): 60–78. http://dx.doi.org/10.37934/arfmts.94.1.6078.
Pełny tekst źródłaAbdullah, Muhd Afiq Hizami, Mohd Zulham Affandi Mohd Zahid, Badorul Hisham Abu Bakar, Fadzli Mohamed Nazri i Afizah Ayob. "UHPFRC as Repair Material for Fire-Damaged Reinforced Concrete Structure – A Review". Applied Mechanics and Materials 802 (październik 2015): 283–89. http://dx.doi.org/10.4028/www.scientific.net/amm.802.283.
Pełny tekst źródłaAugustino, Daudi Salezi, Richard Ocharo Onchiri, Charles Kabubo i Christopher Kanali. "Mechanical and Durability Performance of High-Strength Concrete with Waste Tyre Steel Fibres". Advances in Civil Engineering 2022 (20.06.2022): 1–16. http://dx.doi.org/10.1155/2022/4691972.
Pełny tekst źródłaRozprawy doktorskie na temat "Fibre durability"
Fisher, Alex K. "Durability design parameters for cellulose fibre reinforced concrete pipes in aggressive environments". Thesis, Queensland University of Technology, 2003.
Znajdź pełny tekst źródłaLevin, Klas. "Durability of Embedded Fibre Optic Sensors in Composites". Doctoral thesis, Stockholm, 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3145.
Pełny tekst źródłaGurusamy, K. "The marine durability of steel fibre reinforced concrete". Thesis, University of Aberdeen, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.234802.
Pełny tekst źródłaNordström, Erik. "Durability of sprayed concrete : steel fibre corrosion in cracks /". Luleå, 2005. http://epubl.luth.se/1402-1544/2005/02.
Pełny tekst źródłaNordström, Erik. "Steel fibre corrosion in cracks : durability of sprayed concrete". Licentiate thesis, Luleå tekniska universitet, 2000. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-18249.
Pełny tekst źródłaGodkänd; 2000; 20070317 (ysko)
Homam, Sayed Mukhtar. "Durability of fibre-reinforced polymers (FRP) used in concrete structures". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape4/PQDD_0023/MQ50345.pdf.
Pełny tekst źródłaDe, Klerk Marthinus David. "The durability of natural sisal fibre reinforced cement-based composites". Thesis, Stellenbosch : Stellenbosch University, 2015. http://hdl.handle.net/10019.1/96895.
Pełny tekst źródłaENGLISH ABSTRACT: The building industry is responsible for a substantial contribution to pollution. The production of building materials, as well as the operation and maintenance of structures leads to large amounts of carbon-dioxide (CO2) being release in the atmosphere. The use of renewable resources and construction materials is just one of the ways in which the carbon footprint of the building industry can be reduced. Sisal fibre is one such renewable material. Sisal fibre is a natural fibre from the Agave Sisalana plant. The possibility of incorporating sisal fibre in a cement-based matrix to replace conventional steel and synthetic fibres has been brought to the attention of researchers. Sisal fibre has a high tensile strength in excess of polypropylene fibre and comparable to PVA fibre. Sisal fibre consists mainly of cellulose, hemi-cellulose and lignin. The disadvantage of incorporating sisal fibre in a cement-based matrix is the degradation of the composite. Sisal fibres tend to degrade in an alkaline environment due to changes in the morphology of the fibre. The pore water in a cement base matrix is highly alkaline which leads to the degradation of the fibres and reduced strength of the composite over time. Sisal fibre reinforced cement-based composites (SFRCC) were investigated to evaluate the durability of the composites. Two chemical treatments, alkaline treatment and acetylation, were performed on the fibre at different concentrations to improve the resistance of the fibre to alkaline attack. Alkaline treatment was performed by using sodium hydroxide (NaOH), while acetylation was performed by using acetic acid or acetic anhydride. Single fibre pull-out (SFP) tests were performed to evaluate the influence of chemical treatment on fibre strength, to study the fibre-matrix interaction and to determine a critical fibre length. A matrix consisting of ordinary Portland cement (OPC), sand and water were used for the SFP tests. This matrix, as well as alternative matrices containing fly ash (FA) and condensed silica fume (CSF) as supplementary cementitious material, were reinforced with 1% sisal fibre (by volume) cut to a length of 20 mm. The OPC matrix was reinforced with untreated- and treated fibre while the alternative matrices were reinforced with untreated fibre. Alternative matrices containing varying fibre volumes and lengths were also produced. Three-point bending- (indirect), direct tensile- and compression tests were performed on specimens at an age of 28 days to determine the strength of the matrix. The remainder of the specimens were subjected to ageing by extended curing in water at 24˚C and 70˚C respectively and by alternate cycles of wetting and drying, after which it was tested at an age of 90 days from production to evaluate the durability of the fibre. An increase in fibre volume led to a decrease in compressive strength and peak tensile strength. The optimum fibre length at a volume of 1% was 20 mm for which the highest compression strength was recorded. The combination of alkali treatment and acetylation was the most effective treatment condition, followed by alkali treatment at low concentrations of sodium hydroxide. At higher concentrations of sodium hydroxide, a significant reduction in strength was recorded. The addition of supplementary cementitious materials also proved to be effective in mitigating degradation, especially in the cases where CSF was used. FA proved to be less effective in reducing the alkalinity of the matrix. However, the use of FA as fine filler resulted in higher strengths. Specimens manufactured by extrusion did not have superior mechanical properties to cast specimens. The conclusion was made that the use of sisal fibre in a cement-based matrix is effective in providing ductile failure. Chemical treatment and the addition of supplementary cementitious materials did improve the durability of the specimens, although degradation still took place.
AFRIKAANSE OPSOMMING: Die boubedryf is verantwoordelik vir 'n aansienlike bydrae tot besoedeling. Die produksie van boumateriale, sowel as die bedryf en instandhouding van strukture lei tot groot hoeveelhede koolstof dioksied (CO2) wat in die atmosfeer vrygestel word. Die gebruik van hernubare hulpbronne en boumateriale is maar net een van die maniere waarop die koolstof voetspoor van die boubedryf verminder kan word. Sisal vesels is 'n voorbeeld van 'n hernubare materiaal. Sisal vesel is 'n natuurlike vesel afkomstig vanaf die Agave Sisalana plant. Die moontlikheid om sisal vesels in 'n sement gebasseerde matriks te gebruik om konvensionele staal en sintetiese vesels te vervang, is tot die aandag van navorsers gebring. Sisal vesel het 'n hoër treksterkte as polipropileen vesels en die treksterkte vergelyk goed met die van PVA vesels. Sisal vesel bestaan hoofsaaklik uit sellulose, hemi-sellulose en lignien. Die nadeel verbonde aan die gebruik van sisal vesels in 'n sement gebasseerde matriks is die degradasie van die komposiet. Sisal vesels is geneig om af te breek in 'n alkaliese omgewing as gevolg van veranderinge wat in die morfologie van die vesel plaasvind. Die water in die porieë van 'n sement gebasseerde matriks is hoogs alkalies wat lei daartoe dat die vesel afgebreek word en die sterkte van die komposiet afneem oor tyd. Sisal vesel versterkte sement gebasseerde komposiete is ondersoek om die duursaamheid van die komposiete te evalueer. Twee chemiese behandelings, alkaliese behandeling en asetilering, is uitgevoer op die vesels teen verskillende konsentrasies om die weerstand van die vesels teen alkaliese aanslag te verbeter. Alkaliese behandeling was uitgevoer met natrium-hidroksied (NaOH) terwyl asetilering met asynsuur en asynsuurhidried uitgevoer is. Enkel vesel uittrek toetse is uitgevoer om die invloed van chemiese behandeling op veselsterkte te evalueer, om die vesel/matriks interaksie te bestudeer en om die kritiese vesellengte te bepaal. 'n Matriks wat uit gewone Portland sement (OPC), sand en water bestaan, is gebruik vir die enkel vesel uittrek toetse. Dieselfde matriks, sowel as alternatiewe matrikse wat vliegas (FA) en gekondenseerde silika dampe (CSF) as aanvullende sementagtige materiaal bevat, is versterk met 1% vesel (by volume) wat 20 mm lank gesny is. Die OPC matriks was versterk met onbehandelde- en behandelde vesels, terwyl die alternatiewe matrikse met onbehandelde vesels versterk is. Matrikse wat wisselende vesel volumes en lengtes bevat het is ook vervaardig. Drie-punt buigtoetse (indirek), direkte trek toetse en druktoetse is uitgevoer op proefstukke teen 'n ouderdom van 28 dae om die sterkte van die matriks te bepaal. Die oorblywende proefstukke is onderwerp aan veroudering deur verlengde nabehandeling in water teen 24˚C en 70˚C onderskeidelik en deur afwissilende siklusse van nat- en droogmaak waarna dit op 'n ouderdom van 90 dae vanaf vervaardiging getoets is om die duursaamheid van die matriks te evalueer. 'n Toename in vesel volume het tot 'n afname in druksterkte en piek treksterkte gelei. Die optimum vesel lengte teen 'n volume van 1% was 20 mm, waarvoor die hoogste druksterkte opgeteken is. Die kombinasie van alkaliese behandeling en asetilering was die mees effektiewe behandeling, gevolg deur alkaliese behandeling by lae konsentrasies natrium-hidroksied. Vir hoë konsentrasies natrium-hidroksied is 'n aansienlike afname in sterkte opgeteken. Die toevoeging van aanvullende sementagtige materiale was ook effektief om die degradadering van die vesels te verminder, veral in die gevalle waar CSF gebruik is. FA was minder effektief om die alkaliniteit van die matriks te verminder. Die gebruik van FA as fyn vuller het nietemin hoër sterkte tot gevolg gehad. Proefstukke wat deur ekstrusie vervaardig is, het nie beter meganiese eienskappe gehad as proefstukke wat gegiet is nie. Daar is tot die gevolgtrekking gekom dat sisal vesel in 'n sement gebasseerde matriks wel effektief is om 'n duktiele falingsmode te voorsien. Chemiese behandeling en die toevoeging van aanvullende sementagtige materiale het die duursaamheid van die proefstukke verbeter, alhoewel degradering steeds plaasgevind het.
Zhang, J. "The performance and environmental durability of pultruded glass fibre composite rebars". Thesis, Loughborough University, 2000. https://dspace.lboro.ac.uk/2134/7354.
Pełny tekst źródłaPurnell, Philip. "The durability of glass fibre reinforced cements made with new cementitious matrices". Thesis, Aston University, 1998. http://publications.aston.ac.uk/13285/.
Pełny tekst źródłaHenault, Jean-Marie. "Approche méthodologique pour l’évaluation des performances et de la durabilité des systèmes de mesure répartie de déformation : application à un câble à fibre optique noyé dans le béton". Thesis, Paris Est, 2013. http://www.theses.fr/2013PEST1113/document.
Pełny tekst źródłaStructural Health Monitoring is a key factor in life-cycle management of civil structures. Truly distributed fiber optic sensors, composed by an optoelectronic device paired with an optical fiber in a cable, provide strain profiles over several kilometers with a centimeter resolution. They are thus able to provide relevant information on large structures. However, a preliminary performance assessment is required prior to any industrial application. Due to shear deformation of the cable's protective coating, strain measurements provided by the measuring system may differ from actual strains in the embedding medium. A methodology, based on mechanical tests and modelling, was thus developed to determine the relationship between measured/actual strains. It was applied to determine the mechanical response of a specific cable embedded in concrete. Performance assessment method was applied to a specific measuring system. Tests were carried out under laboratory conditions on the fiber optic cable, out of the concrete medium in a first stage, and then embedded in concrete structures. It enabled to evaluate its components and standard uncertainties. The cable could not be replaced after being embedded in concrete. It is necessary to evaluate the ageing effects on its mechanical properties to use it for a long term period. A specific study was carried out to determine the cable durability under chemical, thermal and mechanical solicitations
Książki na temat "Fibre durability"
Nemkumar, Banthia, Benmokrane Brahim, Kharbhari Vistasp, Abanilla M. A i ISIS Canada, red. Durability of fibre reinforced polymers in civil infrastructure. Winnipeg, Man: ISIS Canada Research Network, 2006.
Znajdź pełny tekst źródłaWittmann, F., i G. Van Zijl, red. Durability of Strain-Hardening Fibre-Reinforced Cement-Based Composites (SHCC). Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0338-4.
Pełny tekst źródłaWittmann, F. H. Durability of Strain-Hardening Fibre-Reinforced Cement-Based Composites (SHCC). Dordrecht: RILEM, 2011.
Znajdź pełny tekst źródłaHomam, Sayed Mukhtar. Durability of fibre-reinforced polymers (FRP) used in concrete structures. Ottawa: National Library of Canada, 2000.
Znajdź pełny tekst źródłaS, Hearle J. W., red. Fibre failure and wear of materials: An atlas of fracture, fatigue, and durability. Chichester, England: Ellis Horwood, 1989.
Znajdź pełny tekst źródłaMiyano, Yasushi, red. Durability of Fiber-Reinforced Polymers. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527811984.
Pełny tekst źródłaGrace, Nabil F. Environmental/durability evaluation of FRP composite strengthened bridges. Southfield, Mich: Lawrence Technological University, Civil Engineering Dept., 2003.
Znajdź pełny tekst źródłaChamis, C. C. Designing for fiber composite structural durability in hygrothermomechanical environments. Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, 1985.
Znajdź pełny tekst źródłaChamis, C. C. Designing for fiber composite structural durability in hygrothermomechanical environments. Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, 1985.
Znajdź pełny tekst źródłaChamis, C. C. Designing for fiber composite structural durability in hygrothermomechanical environments. Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, 1985.
Znajdź pełny tekst źródłaCzęści książek na temat "Fibre durability"
Ogawa, Atsuhisa, i Hideki Hoshiro. "Durability of Fibres". W Durability of Strain-Hardening Fibre-Reinforced Cement-Based Composites (SHCC), 81–88. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-94-007-0338-4_6.
Pełny tekst źródłaLow, It-Meng, Thamer Alomayri i Hasan Assaedi. "Moisture Absorption and Durability". W Cotton and Flax Fibre-Reinforced Geopolymer Composites, 147–76. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2281-6_5.
Pełny tekst źródłaMuhle, H., B. Bellmann i F. Pott. "Durability of Various Mineral Fibres in Rat Lungs". W Mechanisms in Fibre Carcinogenesis, 181–87. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-1363-2_17.
Pełny tekst źródłaOh, Byung H., i Petr Kabele. "Durability under Chemical Loads". W Durability of Strain-Hardening Fibre-Reinforced Cement-Based Composites (SHCC), 41–58. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-94-007-0338-4_3.
Pełny tekst źródłaToledo Filho, Romildo D., Eduardo M. R. Fairbairn i Volker Slowik. "Durability under Thermal Loads". W Durability of Strain-Hardening Fibre-Reinforced Cement-Based Composites (SHCC), 59–71. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-94-007-0338-4_4.
Pełny tekst źródłaWittmann, Folker H. "Durability under Combined Loads". W Durability of Strain-Hardening Fibre-Reinforced Cement-Based Composites (SHCC), 73–79. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-94-007-0338-4_5.
Pełny tekst źródłaSrikumar, Rohini, Bibhuti Bhusan Das i Sharan Kumar Goudar. "Durability Studies of Polypropylene Fibre Reinforced Concrete". W Lecture Notes in Civil Engineering, 727–36. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-3317-0_65.
Pełny tekst źródłaYadav, Shonu, Bibhuti Bhusan Das i Sharan Kumar Goudar. "Durability Studies of Steel Fibre Reinforced Concrete". W Lecture Notes in Civil Engineering, 737–45. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-3317-0_66.
Pełny tekst źródłaDvorkin, Leonid, Vadim Zhitkovsky, Oleh Bordiuzhenko i Yuri Ribakov. "Properties of Fibre Concrete Determining Its Durability". W High Performance Concrete Optimal Composition Design, 147–59. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003357865-11.
Pełny tekst źródłaDhundasi, Abbas Ali, R. B. Khadiranaikar i Kashinath Motagi. "Durability Properties of Fibre-Reinforced Reactive Powder Concrete". W Recent Trends in Construction Technology and Management, 15–28. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2145-2_2.
Pełny tekst źródłaStreszczenia konferencji na temat "Fibre durability"
"Durability of Steel Fibre Reinforced Concrete". W SP-212: Sixth CANMET/ACI: Durability of Concrete. American Concrete Institute, 2003. http://dx.doi.org/10.14359/12715.
Pełny tekst źródłaHerszberg, Israel, Michael K. Bannister, Henry C. H. Li, Ben Qi i Jane Marsden. "Durability under fatigue loading of optical fibres applied to fibre reinforced plastic composites". W Third European Workshop on Optical Fibre Sensors. SPIE, 2007. http://dx.doi.org/10.1117/12.738395.
Pełny tekst źródłaDavies, Peter, Nicolas Lacotte, Mael Arhant, Damien Durville, Abderrahim Belkhabbaz, Michel François, Fabien Khouri i in. "Improved Bend Over Sheave Durability of HMPE Ropes for Deep Sea Handling". W ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/omae2018-77530.
Pełny tekst źródłaFoon, Leong Yee, Rokiah Binti Othman, Ramadhansyah Putra Jaya, Mohd Arif Sulaiman i Youventharan Duraisamy. "Durability of Basalt Rebars under Alkaline Environment". W World Sustainable Construction Conference Series 2022. Switzerland: Trans Tech Publications Ltd, 2023. http://dx.doi.org/10.4028/p-hr94qc.
Pełny tekst źródła"Mechanical Characteristics of High Performance Fibre Reinforced Concretes at Elevated Temperatures". W SP-212: Sixth CANMET/ACI: Durability of Concrete. American Concrete Institute, 2003. http://dx.doi.org/10.14359/12733.
Pełny tekst źródłaNouri, Mustapha, i Mahfoud Tahlaiti. "A Dual-Scale Numerical Model for the Diffusive Behaviour Prediction of Biocomposites Based on Randomly Oriented Fibres". W 4th International Conference on Bio-Based Building Materials. Switzerland: Trans Tech Publications Ltd, 2022. http://dx.doi.org/10.4028/www.scientific.net/cta.1.584.
Pełny tekst źródła"Fatigue Performance of Fibre-Reinforced CementComposite Concrete Beams". W "SP-126: Durability of Concrete: Second International Conference, Montreal, Canada 1991". American Concrete Institute, 1991. http://dx.doi.org/10.14359/2915.
Pełny tekst źródłaNemegeer, D. "Brite Euram program on steel fibre concrete subtask: durability : corrosion resistance of cracked fibre reinforced concrete." W International RILEM Workshop on Test and Design Methods for Steelfibre Reinforced Concrete. RILEM Publications SARL, 2003. http://dx.doi.org/10.1617/2351580168.004.
Pełny tekst źródłaRizk, A., i C. Davis. "Reliability and durability studies for fabricating, packaging and bonding Fibre Bragg gratings". W 35th Australian Conference on Optical Fibre Technology (ACOFT 2010). IEEE, 2010. http://dx.doi.org/10.1109/acoft.2010.5929941.
Pełny tekst źródłaPerumal, P., T. Paul, T. Luukkonen, J. Röning, P. Kinnunen i M. Illikainen. "Performance of Fibre-Reinforced Slag-Based Alkali Activated Mortar in Acidic Environment". W XV International Conference on Durability of Building Materials and Components. CIMNE, 2020. http://dx.doi.org/10.23967/dbmc.2020.109.
Pełny tekst źródłaRaporty organizacyjne na temat "Fibre durability"
Tseng, Tzu-Chun, i Amit H. Varma. Synthesis Study: Repair and Durability of Fire-Damaged Prestressed Concrete Bridge Girders. Purdue University, 2022. http://dx.doi.org/10.5703/1288284317378.
Pełny tekst źródłaCorum, J. M. Durability-Based Design Properties of Reference Crossply Carbon-Fiber Composite. Office of Scientific and Technical Information (OSTI), kwiecień 2001. http://dx.doi.org/10.2172/779794.
Pełny tekst źródłaBattiste, R. L., J. M. Corum, W. Ren i M. B. Ruggles. Durability-Based Design Criteria for a Chopped-Glass-Fiber Automotive Structural Composite. Office of Scientific and Technical Information (OSTI), listopad 1999. http://dx.doi.org/10.2172/14879.
Pełny tekst źródłaCorum, J. M. Durability-Based Design Criteria for a Quasi-Isotropic Carbon-Fiber Automotive Composite. Office of Scientific and Technical Information (OSTI), kwiecień 2002. http://dx.doi.org/10.2172/814041.
Pełny tekst źródłaNaus, Dan J., James Corum, Lynn B. Klett, Mike Davenport, Rick Battiste i Jr ,. William A. Simpson. Durability-Based Design Criteria for a Quasi-Isotropic Carbon-Fiber-Reinforced Thermoplastic Automotive Composite. Office of Scientific and Technical Information (OSTI), kwiecień 2006. http://dx.doi.org/10.2172/930728.
Pełny tekst źródłaRen, W. Time-Dependent Deformation Modelling for a Chopped-Glass Fiber Composite for Automotive Durability Design Criteria. Office of Scientific and Technical Information (OSTI), sierpień 2001. http://dx.doi.org/10.2172/788361.
Pełny tekst źródłaCarringer, N. M., i S. Groves. Strength and Durability of Continuous Fiber Polymer Composites Final Report CRADA No. TC-0170-91. Office of Scientific and Technical Information (OSTI), luty 2018. http://dx.doi.org/10.2172/1424658.
Pełny tekst źródłaBattiste, R. L., J. M. Corum, W. Ren i M. B. Ruggles. Recommended Minimum Test Requirements and Test Methods for Assessing Durability of Random-Glass-Fiber Composites. Office of Scientific and Technical Information (OSTI), czerwiec 1999. http://dx.doi.org/10.2172/9282.
Pełny tekst źródłaLee, Andre. Durability Characterization of POSS-Based Polyimides and Carbon-Fiber Composites for Air Force-Related Applications. Fort Belvoir, VA: Defense Technical Information Center, grudzień 2007. http://dx.doi.org/10.21236/ada481814.
Pełny tekst źródłaWeiss, Charles, William McGinley, Bradford Songer, Madeline Kuchinski i Frank Kuchinski. Performance of active porcelain enamel coated fibers for fiber-reinforced concrete : the performance of active porcelain enamel coatings for fiber-reinforced concrete and fiber tests at the University of Louisville. Engineer Research and Development Center (U.S.), maj 2021. http://dx.doi.org/10.21079/11681/40683.
Pełny tekst źródła