Gotowa bibliografia na temat „Ferromagnetic Quantum Dots”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Ferromagnetic Quantum Dots”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Ferromagnetic Quantum Dots"
GAO, PAN, SUHANG LIU, LIN TIAN i TIANXING MA. "QUANTUM MONTE CARLO STUDY OF MAGNETIC CORRELATION IN GRAPHENE NANORIBBONS AND QUANTUM DOTS". Modern Physics Letters B 27, nr 21 (11.08.2013): 1330016. http://dx.doi.org/10.1142/s0217984913300160.
Pełny tekst źródłaOmariy, Aiman Al, i Reim Almotiriz y. "QUANTUM DOTS IN FERROMAGNETIC HEISENBERG MODEL". EPH - International Journal of Applied Science 2, nr 4 (27.12.2016): 1–5. http://dx.doi.org/10.53555/eijas.v2i4.24.
Pełny tekst źródłaMa, Xi Ying. "Fabrication of Ferromagnetic Ge Quantum Dots Material". Advanced Materials Research 531 (czerwiec 2012): 71–74. http://dx.doi.org/10.4028/www.scientific.net/amr.531.71.
Pełny tekst źródłaXiu, Faxian. "Magnetic Mn-Doped Ge Nanostructures". ISRN Condensed Matter Physics 2012 (7.05.2012): 1–25. http://dx.doi.org/10.5402/2012/198590.
Pełny tekst źródłaMA, QIONG, TAO TU, LI WANG, HAI-OU LI, ZHI-RONG LIN, MING XIAO i GUO-PING GUO. "SUBSTRATE MODULATED GRAPHENE QUANTUM DOTS". Modern Physics Letters B 26, nr 25 (7.09.2012): 1250162. http://dx.doi.org/10.1142/s021798491250162x.
Pełny tekst źródłaXiu, Faxian, Igor V. Ovchinnikov, Pramey Upadhyaya, Kin Wong, Xufeng Kou, Yi Zhou i Kang L. Wang. "Voltage-controlled ferromagnetic order in MnGe quantum dots". Nanotechnology 21, nr 37 (20.08.2010): 375606. http://dx.doi.org/10.1088/0957-4484/21/37/375606.
Pełny tekst źródłaRamlan, Dinna G., Steven J. May, Jian-Guo Zheng, Jonathan E. Allen, Bruce W. Wessels i Lincoln J. Lauhon. "Ferromagnetic Self-Assembled Quantum Dots on Semiconductor Nanowires". Nano Letters 6, nr 1 (styczeń 2006): 50–54. http://dx.doi.org/10.1021/nl0519276.
Pełny tekst źródłaYang, J. Y., K. S. Yoon, Y. H. Do, C. O. Kim, J. P. Hong, Y. H. Rho i H. J. Kim. "Ferromagnetic quantum dots formed by external laser irradiation". Journal of Applied Physics 93, nr 10 (15.05.2003): 8766–68. http://dx.doi.org/10.1063/1.1558600.
Pełny tekst źródłaYan, Wensheng, Qinghua Liu, Chao Wang, Xiaoyu Yang, Tao Yao, Jingfu He, Zhihu Sun i in. "Realizing Ferromagnetic Coupling in Diluted Magnetic Semiconductor Quantum Dots". Journal of the American Chemical Society 136, nr 3 (10.01.2014): 1150–55. http://dx.doi.org/10.1021/ja411900w.
Pełny tekst źródłaMartinek, J., Y. Utsumi, H. Imamura, J. Barnaś, S. Maekawa i G. Schön. "Kondo effect in quantum dots coupled to ferromagnetic electrodes". Physica E: Low-dimensional Systems and Nanostructures 18, nr 1-3 (maj 2003): 75–76. http://dx.doi.org/10.1016/s1386-9477(02)00980-3.
Pełny tekst źródłaRozprawy doktorskie na temat "Ferromagnetic Quantum Dots"
So, Tak Ki. "MBE-grown Fe ferromagnetic quantum dots /". View Abstract or Full-Text, 2003. http://library.ust.hk/cgi/db/thesis.pl?PHYS%202003%20SO.
Pełny tekst źródłaIncludes bibliographical references (leaves 61-62). Also available in electronic version. Access restricted to campus users.
Kolb, Paul Walter. "Cryogenic near-field scanning optical microscopy : quantum dots, charge-ordered domains, and ferromagnetic nucleation /". College Park, Md. : University of Maryland, 2004. http://hdl.handle.net/1903/1497.
Pełny tekst źródłaThesis research directed by: Physics. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Lok, Shu Kin. "MBE grown Fe-based nanostructures /". View abstract or full-text, 2010. http://library.ust.hk/cgi/db/thesis.pl?PHYS%202010%20LOK.
Pełny tekst źródłaCubaynes, Tino. "Shaping the spectrum of carbon nanotube quantum dots with superconductivity and ferromagnetism for mesoscopic quantum electrodynamics". Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS195/document.
Pełny tekst źródłaIn this thesis, we study carbon nanotubes based quantum dot circuits embedded in a microwave cavity. This general architecture allows one to simultaneously probe the circuit via quantum transport measurements and using circuit quantum electrodynamics techniques. The two experiments realized in this thesis use metallic contacts of the circuit as a resource to engineer a spin sensitive spectrum in the quantum dots. The first one is a Cooper pair splitter which was originally proposed as a source of non local entangled electrons. By using cavity photons as a probe of the circuit internal dynamics, we observed a charge transition dressed by coherent Cooper pair splitting. Strong charge-photon coupling in a quantum dot circuit was demonstrated for the first time in such a circuit. A new fabrication technique has also been developed to integrate pristine carbon nanotubes inside quantum dot circuits. The purity and tunability of this new generation of devices has made possible the realization of the second experiment. In the latter, we uses two non-collinear spin-valves to create a coherent interface between an electronic spin in a double quantum dot and a photon in a cavity. Highly coherent spin transitions have been observed. We provide a model for the decoherence based on charge noise and nuclear spin fluctuations
Siqueira, Ezequiel Costa. "Transporte por reflexão de Andreev em pontos quânticos duplos acoplados a eletrodos supercondutores e ferromagnéticos". [s.n.], 2010. http://repositorio.unicamp.br/jspui/handle/REPOSIP/277834.
Pełny tekst źródłaTese (doutorado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin
Made available in DSpace on 2018-09-24T19:09:49Z (GMT). No. of bitstreams: 1 Siqueira_EzequielCosta_D.pdf: 16155551 bytes, checksum: 43337169b3f9ac0ffbe444e3859ff790 (MD5) Previous issue date: 2010
Resumo: Neste trabalho é estudado o transporte quântico em nanoestruturas híbridas compostas por pontos quânticos (PQ) duplos acoplados a eletrodos supercondutores (S) e ferromagnéticos (F). A primeira nanoestrutura, denotada por F - PQa - PQb - S consiste em dois PQs em série acoplados a um eletrodo ferromagnético e outro supercondutor. O segundo sistema, denotado por (F1, F2) - PQa - PQb - S consiste em dois PQs em série acoplados a dois eletrodos ferromagnéticos e um supercondutor. Através do método de funções de Green de não equilíbrio foram obtidas expressões para a corrente elétrica, condutância diferencial, densidade local de estados (LDOS) e a transmitância para energias inferiores ao gap supercondutor. Neste regime, o mecanismo de transmissão de carga é a reflexão de Andreev, a qual permite controlar a corrente através da polarização do ferromagneto. A presença de interações nos PQs é considerada usando um tratamento de campo médio. Para o sistema F - PQa - PQb - S, as interações tendem a localizar os elétrons nos PQs levando a um padrão assimétrico da LDOS reduzindo a transmissão através da nanoestrutura. Em particular, a interação intra PQ levanta a degenerescência de spin reduzindo o valor máximo da corrente devido ao desequilíbrio nas populações de spin up e spin down. Regiões de condutância diferencial negativa (CDN) aparecem em determinados valores do potencial aplicado, como resultado da competição entre o espalhamento Andreev e as correlações eletrônicas. Aplicando-se um potencial de gate nos pontos quânticos é possível sintonizar o efeito mudando a região onde este fenômeno ocorre. Para o sistema (F1, F2) - PQa - PQb - S observou-se que o sinal da magnetoresistência pode mudar de positivo para negativo mudando-se o sinal do potencial aplicado. Além disso é possível controlar a corrente no primeiro eletrodo mudando-se o valor do potencial no segundo ferromagneto. Este tipo de controle pode ser interessante do ponto de vista de aplicações desde que é um comportamento similar a um transistor. Na presença de interações nos PQs, observou-se novamente regiões de CDN para determinados valores do potencial aplicado mesmo para quando os ferromagnetos estão completamente polarizados. Desta forma, a interação entre supercondutividade e correlações eletrônicas permitiu observar fenômenos originais mostrando que este sistemas podem ser utilizados em aplicações tecnológicas futuras
Abstract: In this work we studied the quantum transport in two hybrid nanostructures composed of double quantum dots (DQD)s coupled to superconductor (S) and ferromagnetic (F) leads. The first nanostructure, denoted by F - QDa - QDb - S, is composed of a ferromagnet, two quantum dots, and a superconductor connected in series. In the second nanostructure, denoted by ( F1, F2) - QDa - Q Db - S, a second ferromagnetic lead is added and coupled to the first QD. By using the non-equilibrium Green's function approach, we have calculated the electric current, the differential conductance and the transmittance for energies within the superconductor gap. In this regime, the mechanism of charge transmission is the Andreev re°ection, which allows for a control of the current through the ferromagnet polarization. We have also included interdot and intradot interactions, and have analyzed their influence through a mean field approximation. For the F - QDa - QDb - S system the presence of interactions tend to localize the electrons at the double-dot system, leading to an asymmetric pattern for the density of states at the dots, and thus reducing the transmission probability through the device. In particular, for non-zero polarization, the intradot interaction splits the spin degeneracy, reducing the maximum value of the current due to different spin-up and spin-down densities of states. Negative differential conductance (NDC) appears for some regions of the voltage bias, as a result of the interplay of the Andreev scattering with electronic correlations. By applying a gate voltage at the dots, one can tune the effect, changing the voltage region where this novel phenomenon appears. In the (F1, F2) - QDa - QDb - S, we have found that the signal of the magnetoresistance can be changed through the external potential applied in the ferromagnets. In addition, it is possible to control the current of the first ferromagnet (F1) through the potential applied in the second one (F2). This transistor-like behavior can be useful in technological applications. In the presence of interaction at the dots it was observed the NDC effect even when the electrodes were fully polarized. The results presented in this thesis show that the interplay between the superconductor correlation and electronic interactions can give rise to original effects which can be used in future technological applications
Doutorado
Física da Matéria Condensada
Doutor em Ciências
Ou, Yi-Ching, i 歐逸青. "Probing physical properties in nanostructures: I. Collective transport in self-assembled PbSe quantum dot arrays II. Ferromagnetism in Zn1-xCoxO nanowires". Thesis, 2011. http://ndltd.ncl.edu.tw/handle/91556339764734268555.
Pełny tekst źródła國立交通大學
物理研究所
99
In the thesis we study three physical phenomena in nanostructures: self-assembly of PbSe quantum dot array, collective transport in PbSe quantum dot arrays, and ferromagnetism in Zn1-xCoxO nanowires. Semiconductor quantum dots with diameters of several to tens of nanometers have been largely synthesized through colloidal techniques for nanoscience exploration of quantum confinement, Coulomb staircase, and artificial-atom states in individual quantum dots and self-assembling growth behavior. To learn about the underlying physics of self-assembly, growth mechanisms, and coupling-induced collective properties, here we report a facile way of preparing nanocrystal-assembled 2D islands by drop-casting nanocrystal suspension on a hot substrate. Growth mechanisms such as scaling function, spinodal decomposition phase separation, and diffusion-limited aggregation are investigated based on the observation of quasi-monolayer coverage. After a curve fitting to several theoretical growth models, the pair bond (interaction) energy, critical nucleus size, and the phase of growth patterns were determined. Moreover, by heating the substrate and controlling the concentration of nanocrystal suspension, the spinodal decomposition and diffusion-limited aggregation can be tuned to modulate growth patterns of 2D nanocrystal islands. The interplay of these two mechanisms results in a variation of wavelength in spinodal growth patterns and of fractal pattern dimensions. By using this experimental approach, various sizes and shapes of nanocrystal-assembled 2D islands can be deposited on a flat surface of either graphite or gold. Although charge transport of three-dimensional quantum dot arrays has been attempted for study on the micron scale, the electrical properties of a nanoscale array, self-assembled from a single quantum dot through a bottom-up procedure, have not been explored yet. Inter-dot Coulomb interactions and collective Coulomb blockade were theoretically argued to be a newly important topic, and experimentally identified in semiconductor quantum dots. To study the interdot coupling, we control growth parameters to self-assemble different sizes of PbSe quantumdot arrays on flat gold surface for scanning tunneling spectroscopy measurements at both room and liquid-nitrogen temperatures. The current-voltage curves of the arrays are analyzed using a double-barrier tunnel junction model to acquire the shunt capacitance between the array and the gold substrate. The increment of this capacitance is small as the particle number increases extremely from 1 to 80. Thus the array cannot be taken as a simple semiconductor island. The tip-to-array, array-to-substrate, and interdot capacitances are evaluated and the tunneling spectra of quantum-dot arrays are analyzed by the theory of collective Coulomb blockade. The current–voltage of PbSe quantum-dot arrays conforms properly to a scaling power law function. The dependence of tunneling spectra on the sizes (numbers of quantum dots) of arrays is reported and the capacitive coupling between quantum dots in the arrays is explored. In the topic of ferromagnetism in Zn1-xCoxO nanowires, diameter controllable ZnO nanowires have been fabricated by thermal evaporation (vapor transport) with various sizes of gold nanoparticles as catalysts. Diluted magnetic semiconductor (DMS) Zn1-xCoxO nanowires were then made by high energy Co ion implantation. The morphology and crystal structure of the nanowires were inspected by use of scanning and transmission electron microscopes. Magnetic properties of the Zn1-xCoxO nanowires were measured by employing a SQUID magnetometer. The as-implanted Zn1-xCoxO nanowires displayed weak ferromagnetism and size dependent behavior has been observed in the magnetic field and temperature dependences of magnetization. The shrinkage of the nanowire diameter reduced the spontaneous magnetization as well as the hysteresis loops. After high-vacuum annealing, Zn1-xCoxO nanowires exhibited strong ferromagnetic ordering at room temperature. Electron microscopy analysis was used to ensure the absence of Co nanocrystals in the annealed nanowires. The effect of annealing on the creation of a strong ferromagnetic state is much more pronounced in thinner nanowires. From field cooled and zero-field cooled magnetization and coercivity measurements between 2 and 300 K, superparamagnetic features were observed in the Zn1-xCoxO nanowires. We argue that the generation of point defects by vacuum annealing is the origin for the enhanced ferromagnetism in the Zn1-xCoxO nanowires. We employed magnetic force microscopy to verify the ferromagnetism in individual Zn1-xCoxO nanowires. Two kinds of domain structure, transverse and longitudinal, were observed in ferromagnetic nanowires and the magnetic dipole moment of individual nanowires was estimated by fitting to a two magnetic point dipole moment model.
Części książek na temat "Ferromagnetic Quantum Dots"
König, Jürgen, Matthias Braun i Jan Martinek. "Manipulating Single Spins in Quantum Dots Coupled to Ferromagnetic Leads". W CFN Lectures on Functional Nanostructures - Volume 2, 103–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14376-2_6.
Pełny tekst źródłaKönig, Jürgen, Jan Martinek, Józef Barnaś i Gerd Schön. "Quantum Dots Attached to Ferromagnetic Leads: Exchange Field, Spin Precession, and Kondo Effect". W CFN Lectures on Functional Nanostructures Vol. 1, 145–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-31533-9_7.
Pełny tekst źródłaSutton, Adrian P. "Small is different". W Concepts of Materials Science, 81–93. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780192846839.003.0007.
Pełny tekst źródłaZinn-Justin, Jean. "Lattice gauge theories: Introduction". W Quantum Field Theory and Critical Phenomena, 607–22. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198834625.003.0025.
Pełny tekst źródłaStreszczenia konferencji na temat "Ferromagnetic Quantum Dots"
STOPA, M. "FERROMAGNETIC AND ANTI-FERROMAGNETIC RECONSTRUCTION IN SEMICONDUCTOR QUANTUM DOTS". W Proceedings of the 7th International Symposium. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776716_0038.
Pełny tekst źródłaMATSUBAYASHI, D., i M. ETO. "KONDO EFFECT IN QUANTUM DOTS COUPLED WITH NONCOLLINEAR FERROMAGNETIC LEADS". W Proceedings of the International Symposium. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812814623_0036.
Pełny tekst źródłaFerri, Fabio A., Vasyl P. Kunets, Gregory J. Salamo i Euclydes Marega Jr. "Ordering ferromagnetic In[sub 1−x]Mn[sub x]As quantum dots". W THE PHYSICS OF SEMICONDUCTORS: Proceedings of the 31st International Conference on the Physics of Semiconductors (ICPS) 2012. AIP, 2013. http://dx.doi.org/10.1063/1.4848433.
Pełny tekst źródłaLiu, Haoliang, B. X. Du, Meng Xiao i Ke Chen. "Ferromagnetic Quantum Dots Improving Dielectric Properties of Polypropylene Film in Magnetic Field". W 2022 IEEE International Conference on High Voltage Engineering and Applications (ICHVE). IEEE, 2022. http://dx.doi.org/10.1109/ichve53725.2022.9961607.
Pełny tekst źródłaMatsubayashi, Daisuke, i Mikio Eto. "Kondo effect in quantum dots coupled to ferromagnetic leads: effect of noncollinear magnetization". W PHYSICS OF SEMICONDUCTORS: 28th International Conference on the Physics of Semiconductors - ICPS 2006. AIP, 2007. http://dx.doi.org/10.1063/1.2730135.
Pełny tekst źródłaChirla, Razvan, Ireneusz Weymann, Piotr Trocha i Cătălin Paşcu Moca. "The SU(4) Kondo effect in double quantum dots coupled to ferromagnetic leads: A scaling analysis". W TIM 18 PHYSICS CONFERENCE. Author(s), 2019. http://dx.doi.org/10.1063/1.5090063.
Pełny tekst źródłaBersano, Fabio, Michele Aldeghi, Eloi Collette, Michele Ghini, Franco De Palma, Fabian Oppliger, Pasquale Scarlino i in. "Quantum Dots Array on Ultra-Thin SOI Nanowires with Ferromagnetic Cobalt Barrier Gates for Enhanced Spin Qubit Control". W 2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits). IEEE, 2023. http://dx.doi.org/10.23919/vlsitechnologyandcir57934.2023.10185278.
Pełny tekst źródłaHee Chang Jeon, Youn Seek Jeong, Kwang Jae Chung, Kwang Jo Chung, Tae Won Kang, Tae Whan Kim, Wanho Jhe i Se Ahn Song. "(In/sub 1-x/Mn/sub x/)As diluted diluted magnetic semiconductor quantum dots with above room ferromagnetic transition temperature". W Proceedings of MBE-XII. IEEE, 2002. http://dx.doi.org/10.1109/mbe.2002.1037737.
Pełny tekst źródłaKumar, D., J. Sankar, J. Narayan i A. Kvit. "Tunable Magnetic and Mechanical Properties in Metal Ceramic Composite Thin Films". W ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/md-24805.
Pełny tekst źródłaMachida, T., i K. Hamaya. "Spin Transport in a Single InAs Quantum Dot Attached to Ferromagnetic Electrodes (Invited)". W 2008 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2008. http://dx.doi.org/10.7567/ssdm.2008.h-7-1.
Pełny tekst źródła