Artykuły w czasopismach na temat „Feed Forward Neural Network (FFNN)”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Feed Forward Neural Network (FFNN)”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Hasbi, Yasin, Warsito Budi i Santoso Rukun. "Feed Forward Neural Network Modeling for Rainfall Prediction". E3S Web of Conferences 73 (2018): 05017. http://dx.doi.org/10.1051/e3sconf/20187305017.
Pełny tekst źródłaAribowo, Widi, Supari Muslim, Fendi Achmad i Aditya Chandra Hermawan. "Improving Neural Network Based on Seagull Optimization Algorithm for Controlling DC Motor". Jurnal Elektronika dan Telekomunikasi 21, nr 1 (31.08.2021): 48. http://dx.doi.org/10.14203/jet.v21.48-54.
Pełny tekst źródłaAldakheel, Fadi, Ramish Satari i Peter Wriggers. "Feed-Forward Neural Networks for Failure Mechanics Problems". Applied Sciences 11, nr 14 (14.07.2021): 6483. http://dx.doi.org/10.3390/app11146483.
Pełny tekst źródłaDwi Prasetyo, Mohammad Imron, Anang Tjahjono i Novie Ayub Windarko. "FEED FORWARD NEURAL NETWORK SEBAGAI ALGORITMA ESTIMASI STATE OF CHARGE BATERAI LITHIUM POLYMER". KLIK - KUMPULAN JURNAL ILMU KOMPUTER 7, nr 1 (2.03.2020): 13. http://dx.doi.org/10.20527/klik.v7i1.290.
Pełny tekst źródłaS K. Dhakad, S. K. Dhakad, Dr S. C. soni Dr. S.C.soni i Dr Pankaj Agrawal. "The feed forward neural network (FFNN) based model prediction of Molten Carbonate Fuel cells (MCFCs)". Indian Journal of Applied Research 3, nr 2 (1.10.2011): 142–43. http://dx.doi.org/10.15373/2249555x/feb2013/49.
Pełny tekst źródłaNovickis, Rihards, Daniels Jānis Justs, Kaspars Ozols i Modris Greitāns. "An Approach of Feed-Forward Neural Network Throughput-Optimized Implementation in FPGA". Electronics 9, nr 12 (18.12.2020): 2193. http://dx.doi.org/10.3390/electronics9122193.
Pełny tekst źródłaZainudin, Fathin Liyana, Sharifah Saon, Abd Kadir Mahamad, Musli Nizam Yahya, Mohd Anuaruddin Ahmadon i Shingo Yamaguchi. "Feed forward neural network application for classroom reverberation time estimation". Indonesian Journal of Electrical Engineering and Computer Science 15, nr 1 (1.07.2019): 346. http://dx.doi.org/10.11591/ijeecs.v15.i1.pp346-354.
Pełny tekst źródłaAribowo, Widi, Bambang Suprianto i Joko Joko. "Improving neural network using a sine tree-seed algorithm for tuning motor DC". International Journal of Power Electronics and Drive Systems (IJPEDS) 12, nr 2 (1.06.2021): 1196. http://dx.doi.org/10.11591/ijpeds.v12.i2.pp1196-1204.
Pełny tekst źródłaSallam, Tarek, Ahmed Attiya i Nada El-Latif. "Neural-Network-Based Multiobjective Optimizer for Dual-Band Circularly Polarized Antenna". Applied Computational Electromagnetics Society 36, nr 3 (20.04.2021): 252–58. http://dx.doi.org/10.47037/2020.aces.j.360304.
Pełny tekst źródłaCloud, Kirkwood A., Brian J. Reich, Christopher M. Rozoff, Stefano Alessandrini, William E. Lewis i Luca Delle Monache. "A Feed Forward Neural Network Based on Model Output Statistics for Short-Term Hurricane Intensity Prediction". Weather and Forecasting 34, nr 4 (24.07.2019): 985–97. http://dx.doi.org/10.1175/waf-d-18-0173.1.
Pełny tekst źródłaJournal, Baghdad Science. "On Training Of Feed Forward Neural Networks". Baghdad Science Journal 4, nr 1 (4.03.2007): 158–64. http://dx.doi.org/10.21123/bsj.4.1.158-164.
Pełny tekst źródłaRaju, Paladugu, Veera Malleswara Rao i Bhima Prabhakara Rao. "Grey Wolf Optimization-Based Artificial Neural Network for Classification of Kidney Images". Journal of Circuits, Systems and Computers 27, nr 14 (23.08.2018): 1850231. http://dx.doi.org/10.1142/s0218126618502316.
Pełny tekst źródłaFuangkhon, Piyabute. "Parallel Distance-Based Instance Selection Algorithm for Feed-Forward Neural Network". Journal of Intelligent Systems 26, nr 2 (1.04.2017): 335–58. http://dx.doi.org/10.1515/jisys-2015-0039.
Pełny tekst źródłaUtama, Faisal Fikri, Budi Warsito i Sugito Sugito. "MODEL FEED FORWARD NEURAL NETWORK (FFNN) DENGAN ALGORITMA PARTICLE SWARM SEBAGAI OPTIMASI BOBOT (Studi Kasus : Harga Daging Sapi dari Bank Dunia Periode Januari 2007 – Desember 2018)". Jurnal Gaussian 8, nr 1 (28.02.2019): 117–26. http://dx.doi.org/10.14710/j.gauss.v8i1.26626.
Pełny tekst źródłaEdupuganti, Sirisha, Ravichandra Potumarthi, Thadikamala Sathish i Lakshmi Narasu Mangamoori. "Role of Feed Forward Neural Networks Coupled with Genetic Algorithm in Capitalizing of Intracellular Alpha-Galactosidase Production byAcinetobactersp." BioMed Research International 2014 (2014): 1–8. http://dx.doi.org/10.1155/2014/361732.
Pełny tekst źródłaGerek, Ibrahim Halil, Ercan Erdis, Gulgun Mistikoglu i Mumtaz Usmen. "MODELLING MASONRY CREW PRODUCTIVITY USING TWO ARTIFICIAL NEURAL NETWORK TECHNIQUES". Journal of Civil Engineering and Management 21, nr 2 (22.10.2014): 231–38. http://dx.doi.org/10.3846/13923730.2013.802741.
Pełny tekst źródłaSantoso, H., i D. Murdianto. "Analisis Pengenalan Bendera Negara Rumpun Melayu Menggunakan Metode Feed Forward Neural Network". Jurnal Teknologi dan Informasi 10, nr 2 (1.09.2020): 144–52. http://dx.doi.org/10.34010/jati.v10i2.2702.
Pełny tekst źródłaNajdet Nasret Coran, Ali, Prof Dr Hayri Sever i Dr Murad Ahmed Mohammed Amin. "Acoustic data classification using random forest algorithm and feed forward neural network". International Journal of Engineering & Technology 9, nr 2 (1.07.2020): 582. http://dx.doi.org/10.14419/ijet.v9i2.30815.
Pełny tekst źródłaNaganathan, G. S., i C. K. Babulal. "Voltage Stability Margin Assessment Using Multilayer Feed Forward Neural Network". Applied Mechanics and Materials 573 (czerwiec 2014): 661–67. http://dx.doi.org/10.4028/www.scientific.net/amm.573.661.
Pełny tekst źródłaAwadalla, M., H. Yousef, A. Al-Shidani i A. Al-Hinai. "Artificial Intelligent techniques for Flow Bottom Hole Pressure Prediction". INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY 15, nr 12 (23.09.2016): 7263–83. http://dx.doi.org/10.24297/ijct.v15i12.4354.
Pełny tekst źródłaSondhiya, D. K., S. K. Kasde, Dishansh Raj Upwar i A. K. Gwal. "Identification of Very Low Frequency (VLF) Whistlers transients using Feed Forward Neural Network (FFNN)". IOSR Journal of Applied Physics 09, nr 04 (lipiec 2017): 23–29. http://dx.doi.org/10.9790/4861-0904012329.
Pełny tekst źródłaBhandarkar, Tanvi, Vardaan K, Nikhil Satish, S. Sridhar, R. Sivakumar i Snehasish Ghosh. "Earthquake trend prediction using long short-term memory RNN". International Journal of Electrical and Computer Engineering (IJECE) 9, nr 2 (1.04.2019): 1304. http://dx.doi.org/10.11591/ijece.v9i2.pp1304-1312.
Pełny tekst źródłaKhatib, Tamer, Azah Mohamed, K. Sopian i M. Mahmoud. "Assessment of Artificial Neural Networks for Hourly Solar Radiation Prediction". International Journal of Photoenergy 2012 (2012): 1–7. http://dx.doi.org/10.1155/2012/946890.
Pełny tekst źródłaBezabeh, Belete Biazen, i Abrham Debasu Mengistu. "The effects of multiple layers feed-forward neural network transfer function in digital based Ethiopian soil classification and moisture prediction". International Journal of Electrical and Computer Engineering (IJECE) 10, nr 4 (1.08.2020): 4073. http://dx.doi.org/10.11591/ijece.v10i4.pp4073-4079.
Pełny tekst źródłaAkşahin, Mehmet, Aykut Erdamar, Hikmet Fırat, Sadık Ardıç i Osman Eroğul. "OBSTRUCTIVE SLEEP APNEA CLASSIFICATION WITH ARTIFICIAL NEURAL NETWORK BASED ON TWO SYNCHRONIC HRV SERIES". Biomedical Engineering: Applications, Basis and Communications 27, nr 02 (17.03.2015): 1550011. http://dx.doi.org/10.4015/s1016237215500118.
Pełny tekst źródłaAnsari, Saniya, i Udaysingh Sutar. "Devanagari Handwritten Character Recognition using Hybrid Features Extraction and Feed Forward Neural Network Classifier (FFNN)". International Journal of Computer Applications 129, nr 7 (17.11.2015): 22–27. http://dx.doi.org/10.5120/ijca2015906859.
Pełny tekst źródłaHanafaie, Affan, Sugito Sugito i Sudarno Sudarno. "PERAMALAN MENGGUNAKAN MODEL FEED FORWARD NEURAL NETWORK DENGAN ALGORITMA ADAPTIVE SIMULATED ANNEALING (Studi kasus: Harga minyak mentah dunia yang dipublikasikan oleh OPEC)". Jurnal Gaussian 7, nr 4 (30.11.2018): 373–84. http://dx.doi.org/10.14710/j.gauss.v7i4.28865.
Pełny tekst źródłaWigati, Ekky Rosita Singgih, Budi Warsito i Rita Rahmawati. "PEMODELAN JARINGAN SYARAF TIRUAN DENGAN CASCADE FORWARD BACKPROPAGATION PADA KURS RUPIAH TERHADAP DOLAR AMERIKA SERIKAT". Jurnal Gaussian 7, nr 1 (28.02.2018): 64–72. http://dx.doi.org/10.14710/j.gauss.v7i1.26636.
Pełny tekst źródłaC, Narmatha. "A New Neural Network-Based Intrusion Detection System for Detecting Malicious Nodes in WSNs". Journal of Computational Science and Intelligent Technologies 1, nr 3 (2020): 1–8. http://dx.doi.org/10.53409/mnaa.jcsit20201301.
Pełny tekst źródłaEt al., Al-Saif. "Solving Mixed Volterra - Fredholm Integral Equation (MVFIE) by Designing Neural Network". Baghdad Science Journal 16, nr 1 (11.03.2019): 0116. http://dx.doi.org/10.21123/bsj.2019.16.1.0116.
Pełny tekst źródłaBoujoudar, Younes, Hassan Elmoussaoui i Tijani Lamhamdi. "Lithium-Ion batteries modeling and state of charge estimation using Artificial Neural Network". International Journal of Electrical and Computer Engineering (IJECE) 9, nr 5 (1.10.2019): 3415. http://dx.doi.org/10.11591/ijece.v9i5.pp3415-3422.
Pełny tekst źródłaGaya, Muhammad Sani, Norhaliza Abdul Wahab, Yahya M. Sam, Azna N. Anuar i Sharatul Izah Samsuddin. "ANFIS Modelling of Carbon Removal in Domestic Wastewater Treatment Plant". Applied Mechanics and Materials 372 (sierpień 2013): 597–601. http://dx.doi.org/10.4028/www.scientific.net/amm.372.597.
Pełny tekst źródłaDada, Emmanuel Gbenga, Hurcha Joseph Yakubu i David Opeoluwa Oyewola. "Artificial Neural Network Models for Rainfall Prediction". European Journal of Electrical Engineering and Computer Science 5, nr 2 (2.04.2021): 30–35. http://dx.doi.org/10.24018/ejece.2021.5.2.313.
Pełny tekst źródłaJayasankar, T., i J. Arputha Vijayaselvi. "Prediction of Syllable Duration Using Structure Optimised Cuckoo Search Neural Network (SOCNN) for Text-To-Speech". Journal of Computational and Theoretical Nanoscience 13, nr 10 (1.10.2016): 7538–44. http://dx.doi.org/10.1166/jctn.2016.5750.
Pełny tekst źródłaYasin, Hasbi, Budi Warsito, Rukun Santoso i Arief Rachman Hakim. "Forecasting of Rainfall in Central Java using Hybrid GSTAR-NN-PSO Model". E3S Web of Conferences 125 (2019): 23015. http://dx.doi.org/10.1051/e3sconf/201912523015.
Pełny tekst źródłaKişi, Özgür. "River flow forecasting and estimation using different artificial neural network techniques". Hydrology Research 39, nr 1 (1.02.2008): 27–40. http://dx.doi.org/10.2166/nh.2008.026.
Pełny tekst źródłaKumar, Keshav, Vivekanand Singh i Thendiyath Roshni. "Efficacy of hybrid neural networks in statistical downscaling of precipitation of the Bagmati River basin". Journal of Water and Climate Change 11, nr 4 (26.07.2019): 1302–22. http://dx.doi.org/10.2166/wcc.2019.259.
Pełny tekst źródłaJayadianti, Herlina, Tedy Agung Cahyadi, Nur Ali Amri i Muhammad Fathurrahman Pitayandanu. "METODE KOMPARASI ARTIFICIAL NEURAL NETWORK PADA PREDIKSI CURAH HUJAN - LITERATURE REVIEW". Jurnal Tekno Insentif 14, nr 2 (27.08.2020): 48–53. http://dx.doi.org/10.36787/jti.v14i2.150.
Pełny tekst źródłaAwadalla, Medhat, i Hassan Yousef. "Neural Networks for Flow Bottom Hole Pressure Prediction". International Journal of Electrical and Computer Engineering (IJECE) 6, nr 4 (1.08.2016): 1839. http://dx.doi.org/10.11591/ijece.v6i4.10774.
Pełny tekst źródłaAwadalla, Medhat, i Hassan Yousef. "Neural Networks for Flow Bottom Hole Pressure Prediction". International Journal of Electrical and Computer Engineering (IJECE) 6, nr 4 (1.08.2016): 1839. http://dx.doi.org/10.11591/ijece.v6i4.pp1839-1856.
Pełny tekst źródłaMapuwei, Tichaona W., Oliver Bodhlyera i Henry Mwambi. "Univariate Time Series Analysis of Short-Term Forecasting Horizons Using Artificial Neural Networks: The Case of Public Ambulance Emergency Preparedness". Journal of Applied Mathematics 2020 (1.05.2020): 1–11. http://dx.doi.org/10.1155/2020/2408698.
Pełny tekst źródłaVerma, Hari Om, i Naba Kumar Peyada. "Aircraft parameter estimation using ELM network". Aircraft Engineering and Aerospace Technology 92, nr 6 (1.05.2020): 895–907. http://dx.doi.org/10.1108/aeat-01-2019-0003.
Pełny tekst źródłaTheodoropoulos, Panayiotis, Christos C. Spandonidis, Nikos Themelis, Christos Giordamlis i Spilios Fassois. "Evaluation of Different Deep-Learning Models for the Prediction of a Ship’s Propulsion Power". Journal of Marine Science and Engineering 9, nr 2 (24.01.2021): 116. http://dx.doi.org/10.3390/jmse9020116.
Pełny tekst źródłaKaveh, M., i R. A. Chayjan. "Mathematical and neural network modelling of terebinth fruit under fluidized bed drying". Research in Agricultural Engineering 61, No. 2 (2.06.2016): 55–65. http://dx.doi.org/10.17221/56/2013-rae.
Pełny tekst źródłaTelchy, Fatin. "Intelligent Feedback Scheduling of Control Tasks". Iraqi Journal for Electrical and Electronic Engineering 10, nr 2 (1.12.2014): 64–79. http://dx.doi.org/10.37917/ijeee.10.2.2.
Pełny tekst źródłaFirat, M. "Artificial Intelligence Techniques for river flow forecasting in the Seyhan River Catchment, Turkey". Hydrology and Earth System Sciences Discussions 4, nr 3 (6.06.2007): 1369–406. http://dx.doi.org/10.5194/hessd-4-1369-2007.
Pełny tekst źródłaKote, A. S., i D. V. Wadkar. "Modeling of Chlorine and Coagulant Dose in a Water Treatment Plant by Artificial Neural Networks". Engineering, Technology & Applied Science Research 9, nr 3 (8.06.2019): 4176–81. http://dx.doi.org/10.48084/etasr.2725.
Pełny tekst źródłaOladele, Adewole, Vera Vokolkova i Jerome Egwurube. "Transportation Planning through Pavement Performance Prediction Modeling for Botswana Gravel loss Condition". Applied Mechanics and Materials 256-259 (grudzień 2012): 2976–82. http://dx.doi.org/10.4028/www.scientific.net/amm.256-259.2976.
Pełny tekst źródłaZaidan, Martha A., Ola Surakhi, Pak Lun Fung i Tareq Hussein. "Sensitivity Analysis for Predicting Sub-Micron Aerosol Concentrations Based on Meteorological Parameters". Sensors 20, nr 10 (19.05.2020): 2876. http://dx.doi.org/10.3390/s20102876.
Pełny tekst źródłaBabu, Sangita. "A Hybrid Approach for Intrusion Detection using OPSO and Hybridization of Feed Forward Neural Network (FFNN) with Probabilistic Neural Network (PNN)- HFFPNN Classifier". International Journal of Advanced Trends in Computer Science and Engineering 9, nr 1 (15.02.2020): 206–10. http://dx.doi.org/10.30534/ijatcse/2020/31912020.
Pełny tekst źródła