Artykuły w czasopismach na temat „Federate learning”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Federate learning”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Oktian, Yustus Eko, Brian Stanley i Sang-Gon Lee. "Building Trusted Federated Learning on Blockchain". Symmetry 14, nr 7 (8.07.2022): 1407. http://dx.doi.org/10.3390/sym14071407.
Pełny tekst źródłaLi, Yanbin, Yue Li, Huanliang Xu i Shougang Ren. "An Adaptive Communication-Efficient Federated Learning to Resist Gradient-Based Reconstruction Attacks". Security and Communication Networks 2021 (22.04.2021): 1–16. http://dx.doi.org/10.1155/2021/9919030.
Pełny tekst źródłaBektemyssova, G. U., G. S. Bakirova, Sh G. Yermukhanbetova, A. Shyntore, D. B. Umutkulov i Zh S. Mangysheva. "Analysis of the relevance and prospects of application of federate training". Bulletin of the National Engineering Academy of the Republic of Kazakhstan 92, nr 2 (30.06.2024): 56–65. http://dx.doi.org/10.47533/2024.1606-146x.26.
Pełny tekst źródłaShkurti, Lamir, i Mennan Selimi. "AdaptiveMesh: Adaptive Federate Learning for Resource-Constrained Wireless Environments". International Journal of Online and Biomedical Engineering (iJOE) 20, nr 14 (14.11.2024): 22–37. http://dx.doi.org/10.3991/ijoe.v20i14.50559.
Pełny tekst źródłaKholod, Ivan, Evgeny Yanaki, Dmitry Fomichev, Evgeniy Shalugin, Evgenia Novikova, Evgeny Filippov i Mats Nordlund. "Open-Source Federated Learning Frameworks for IoT: A Comparative Review and Analysis". Sensors 21, nr 1 (29.12.2020): 167. http://dx.doi.org/10.3390/s21010167.
Pełny tekst źródłaSrinivas, C., S. Venkatramulu, V. Chandra Shekar Rao, B. Raghuram, K. Vinay Kumar i Sreenivas Pratapagiri. "Decentralized Machine Learning based Energy Efficient Routing and Intrusion Detection in Unmanned Aerial Network (UAV)". International Journal on Recent and Innovation Trends in Computing and Communication 11, nr 6s (13.06.2023): 517–27. http://dx.doi.org/10.17762/ijritcc.v11i6s.6960.
Pełny tekst źródłaTabaszewski, Maciej, Paweł Twardowski, Martyna Wiciak-Pikuła, Natalia Znojkiewicz, Agata Felusiak-Czyryca i Jakub Czyżycki. "Machine Learning Approaches for Monitoring of Tool Wear during Grey Cast-Iron Turning". Materials 15, nr 12 (20.06.2022): 4359. http://dx.doi.org/10.3390/ma15124359.
Pełny tekst źródłaLaunet, Laëtitia, Yuandou Wang, Adrián Colomer, Jorge Igual, Cristian Pulgarín-Ospina, Spiros Koulouzis, Riccardo Bianchi i in. "Federating Medical Deep Learning Models from Private Jupyter Notebooks to Distributed Institutions". Applied Sciences 13, nr 2 (9.01.2023): 919. http://dx.doi.org/10.3390/app13020919.
Pełny tekst źródłaParekh, Nisha Harish, i Mrs Vrushali Shinde. "Federated Learning : A Paradigm Shift in Collaborative Machine Learning". INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, nr 11 (10.11.2024): 1–6. http://dx.doi.org/10.55041/ijsrem38501.
Pełny tekst źródłaШубин, Б., Т. Максимюк, О. Яремко, Л. Фабрі i Д. Мрозек. "МОДЕЛЬ ІНТЕГРАЦІЇ ФЕДЕРАТИВНОГО НАВЧАННЯ В МЕРЕЖІ МОБІЛЬНОГО ЗВ’ЯЗКУ 5-ГО ПОКОЛІННЯ". Information and communication technologies, electronic engineering 2, nr 1 (sierpień 2022): 26–35. http://dx.doi.org/10.23939/ictee2022.01.026.
Pełny tekst źródłaLi, Chengan. "Research advanced in the integration of federated learning and reinforcement learning". Applied and Computational Engineering 40, nr 1 (21.02.2024): 147–54. http://dx.doi.org/10.54254/2755-2721/40/20230641.
Pełny tekst źródłaK. Usha Rani, Sreenivasulu Reddy L., Yaswanth Kumar Alapati, M. Katyayani, Kumar Keshamoni, A. Sree Rama Chandra Murthy,. ""Federated Learning: Advancements, Applications, and Future Directions for Collaborative Machine Learning in Distributed Environments"". Journal of Electrical Systems 20, nr 5s (13.04.2024): 165–71. http://dx.doi.org/10.52783/jes.1900.
Pełny tekst źródłaDelfin, Carl, Iulian Dragan, Dmitry Kuznetsov, Juan Fernandez Tajes, Femke Smit, Daniel E. Coral, Ali Farzaneh i in. "A Federated Database for Obesity Research: An IMI-SOPHIA Study". Life 14, nr 2 (16.02.2024): 262. http://dx.doi.org/10.3390/life14020262.
Pełny tekst źródłaSeol, Mihye, i Taejoon Kim. "Performance Enhancement in Federated Learning by Reducing Class Imbalance of Non-IID Data". Sensors 23, nr 3 (19.01.2023): 1152. http://dx.doi.org/10.3390/s23031152.
Pełny tekst źródłaZhang, Yong, i Mingchuan Zhang. "A Survey of Developments in Federated Meta-Learning". Academic Journal of Science and Technology 11, nr 2 (12.06.2024): 27–29. http://dx.doi.org/10.54097/bzpfwa11.
Pełny tekst źródłaRaju Cherukuri, Bangar. "Federated Learning: Privacy-Preserving Machine Learning in Cloud Environments". International Journal of Science and Research (IJSR) 13, nr 10 (5.10.2024): 1539–49. http://dx.doi.org/10.21275/ms241022095645.
Pełny tekst źródłaJinhyeok Jang, Jinhyeok Jang, Yoonju Oh Jinhyeok Jang, Gwonsang Ryu Yoonju Oh i Daeseon Choi Gwonsang Ryu. "Data Reconstruction Attack with Label Guessing for Federated Learning". 網際網路技術學刊 24, nr 4 (lipiec 2023): 893–903. http://dx.doi.org/10.53106/160792642023072404007.
Pełny tekst źródłaAlaa Hamza Omran, Sahar Yousif Mohammed i Mohammad Aljanabi. "Detecting Data Poisoning Attacks in Federated Learning for Healthcare Applications Using Deep Learning". Iraqi Journal For Computer Science and Mathematics 4, nr 4 (26.11.2023): 225–37. http://dx.doi.org/10.52866/ijcsm.2023.04.04.018.
Pełny tekst źródłaGuo, Wenxin. "Overview of Research Progress and Challenges in Federated Learning". Transactions on Computer Science and Intelligent Systems Research 5 (12.08.2024): 797–804. http://dx.doi.org/10.62051/9qyaha16.
Pełny tekst źródłaMonteiro, Daryn, Ishaan Mavinkurve, Parth Kambli i Prof Sakshi Surve. "Federated Learning for Privacy-Preserving Machine Learning: Decentralized Model Training with Enhanced Data Security". International Journal for Research in Applied Science and Engineering Technology 12, nr 11 (30.11.2024): 355–61. http://dx.doi.org/10.22214/ijraset.2024.65062.
Pełny tekst źródłaAlferaidi, Ali, Kusum Yadav, Yasser Alharbi, Wattana Viriyasitavat, Sandeep Kautish i Gaurav Dhiman. "Federated Learning Algorithms to Optimize the Client and Cost Selections". Mathematical Problems in Engineering 2022 (1.04.2022): 1–9. http://dx.doi.org/10.1155/2022/8514562.
Pełny tekst źródłaFeng, Zecheng. "Federated Learning Security Threats and Defense Approaches". Highlights in Science, Engineering and Technology 85 (13.03.2024): 121–27. http://dx.doi.org/10.54097/wvfhcd40.
Pełny tekst źródłaNing, Weiguang, Yingjuan Zhu, Caixia Song, Hongxia Li, Lihui Zhu, Jinbao Xie, Tianyu Chen, Tong Xu, Xi Xu i Jiwei Gao. "Blockchain-Based Federated Learning: A Survey and New Perspectives". Applied Sciences 14, nr 20 (16.10.2024): 9459. http://dx.doi.org/10.3390/app14209459.
Pełny tekst źródłaJitendra Singh Chouhan, Amit Kumar Bhatt, Nitin Anand. "Federated Learning; Privacy Preserving Machine Learning for Decentralized Data". Tuijin Jishu/Journal of Propulsion Technology 44, nr 1 (24.11.2023): 167–69. http://dx.doi.org/10.52783/tjjpt.v44.i1.2234.
Pełny tekst źródłaMonika Dhananjay Rokade. "Advancements in Privacy-Preserving Techniques for Federated Learning: A Machine Learning Perspective". Journal of Electrical Systems 20, nr 2s (31.03.2024): 1075–88. http://dx.doi.org/10.52783/jes.1754.
Pełny tekst źródłaLiu, Chaoyi, i Qi Zhu. "Joint Resource Allocation and Learning Optimization for UAV-Assisted Federated Learning". Applied Sciences 13, nr 6 (15.03.2023): 3771. http://dx.doi.org/10.3390/app13063771.
Pełny tekst źródłaYarlagadda, Sneha Sree, Sai Harshith Tule i Karthik Myada. "F1 Score Based Weighted Asynchronous Federated Learning". International Journal for Research in Applied Science and Engineering Technology 12, nr 2 (29.02.2024): 947–53. http://dx.doi.org/10.22214/ijraset.2024.58487.
Pełny tekst źródłaLiu, Jessica Chia, Jack Goetz, Srijan Sen i Ambuj Tewari. "Learning From Others Without Sacrificing Privacy: Simulation Comparing Centralized and Federated Machine Learning on Mobile Health Data". JMIR mHealth and uHealth 9, nr 3 (30.03.2021): e23728. http://dx.doi.org/10.2196/23728.
Pełny tekst źródłaToofanee, Mohammud Shaad Ally, Mohamed Hamroun, Sabeena Dowlut, Karim Tamine, Vincent Petit, Anh Kiet Duong i Damien Sauveron. "Federated Learning: Centralized and P2P for a Siamese Deep Learning Model for Diabetes Foot Ulcer Classification". Applied Sciences 13, nr 23 (28.11.2023): 12776. http://dx.doi.org/10.3390/app132312776.
Pełny tekst źródłaLi, Jipeng, Xinyi Li i Chenjing Zhang. "Analysis on Security and Privacy-preserving in Federated Learning". Highlights in Science, Engineering and Technology 4 (26.07.2022): 349–58. http://dx.doi.org/10.54097/hset.v4i.923.
Pełny tekst źródłaWoo, Gimoon, Hyungbin Kim, Seunghyun Park, Cheolwoo You i Hyunhee Park. "Fairness-Based Multi-AP Coordination Using Federated Learning in Wi-Fi 7". Sensors 22, nr 24 (13.12.2022): 9776. http://dx.doi.org/10.3390/s22249776.
Pełny tekst źródłaDR.AR.SIVAKUMARAN, POLNENI ABHINAYA, PENDYALA SWETHA i POKALA MAHITHA. "DATA POISONING ATTACKS ON FEDERATED MACHINE LEARNING". International Journal of Engineering, Science and Advanced Technology 24, nr 10 (2024): 188–97. http://dx.doi.org/10.36893/ijesat.2024.v24i10.022.
Pełny tekst źródłaChouhan, Khushi Udaysingh, Nikita Pradeep Kumar Jha, Roshni Sanjay Jha, Shaikh Insha Kamaluddin i Dr Nupur Giri. "Mobile Keyword Prediction using Federated Learning". International Journal for Research in Applied Science and Engineering Technology 11, nr 4 (30.04.2023): 3144–51. http://dx.doi.org/10.22214/ijraset.2023.50826.
Pełny tekst źródłaWang, Weixi. "Empowering safe and secure autonomy: Federated learning in the era of autonomous driving". Applied and Computational Engineering 51, nr 1 (25.03.2024): 40–44. http://dx.doi.org/10.54254/2755-2721/51/20241158.
Pełny tekst źródłaAjay, Ajay, Ajay Kumar, Krishan Kant Singh Gautam, Pratibha Deshmukh, Pavithra G i Laith Abualigah. "Collaborative Intelligence for IoT: Decentralized Net security and confidentiality". Journal of Intelligent Systems and Internet of Things 13, nr 2 (2024): 202–11. http://dx.doi.org/10.54216/jisiot.130216.
Pełny tekst źródłaEmmanni, Phani Sekhar. "Federated Learning for Cybersecurity in Edge and Cloud Computing". International Journal of Computing and Engineering 5, nr 4 (12.03.2024): 27–38. http://dx.doi.org/10.47941/ijce.1829.
Pełny tekst źródłaZhang, Ticao, i Shiwen Mao. "An Introduction to the Federated Learning Standard". GetMobile: Mobile Computing and Communications 25, nr 3 (7.01.2022): 18–22. http://dx.doi.org/10.1145/3511285.3511291.
Pełny tekst źródłaLee, Haeyun, Young Jun Chai, Hyunjin Joo, Kyungsu Lee, Jae Youn Hwang, Seok-Mo Kim, Kwangsoon Kim i in. "Federated Learning for Thyroid Ultrasound Image Analysis to Protect Personal Information: Validation Study in a Real Health Care Environment". JMIR Medical Informatics 9, nr 5 (18.05.2021): e25869. http://dx.doi.org/10.2196/25869.
Pełny tekst źródłaTian, Junfeng, Xinyao Chen i Shuo Wang. "Few-Shot Federated Learning: A Federated Learning Model for Small-Sample Scenarios". Applied Sciences 14, nr 9 (4.05.2024): 3919. http://dx.doi.org/10.3390/app14093919.
Pełny tekst źródłaHang, Yifei. "Federated learning-based neural network for hotel cancellation prediction". Applied and Computational Engineering 45, nr 1 (15.03.2024): 190–95. http://dx.doi.org/10.54254/2755-2721/45/20241092.
Pełny tekst źródłaGao, Yuan. "Federated learning: Impact of different algorithms and models on prediction results based on fashion-MNIST data set". Applied and Computational Engineering 86, nr 1 (31.07.2024): 210–18. http://dx.doi.org/10.54254/2755-2721/86/20241594.
Pełny tekst źródłaAl-Tameemi, M., M. B. Hassan i S. A. Abass. "Federated Learning (FL) – Overview". LETI Transactions on Electrical Engineering & Computer Science 17, nr 5 (2024): 74–82. http://dx.doi.org/10.32603/2071-8985-2024-17-5-74-82.
Pełny tekst źródłaLi, Sirui, Keyu Shao i Jingqi Zhou. "Research Advanced in Federated Learning". Applied and Computational Engineering 40, nr 1 (21.02.2024): 140–46. http://dx.doi.org/10.54254/2755-2721/40/20230640.
Pełny tekst źródłaChen, Gaofeng, i Qingtao Wu. "A Review of Personalized Federated Reinforcement Learning". International Journal of Computer Science and Information Technology 3, nr 1 (15.06.2024): 1–9. http://dx.doi.org/10.62051/ijcsit.v3n1.01.
Pełny tekst źródłaJiang, Jingyan, Liang Hu, Chenghao Hu, Jiate Liu i Zhi Wang. "BACombo—Bandwidth-Aware Decentralized Federated Learning". Electronics 9, nr 3 (5.03.2020): 440. http://dx.doi.org/10.3390/electronics9030440.
Pełny tekst źródłaShrivastava, Arpit. "Privacy-Centric AI: Navigating the Landscape with Federated Learning". International Journal for Research in Applied Science and Engineering Technology 12, nr 5 (31.05.2024): 357–63. http://dx.doi.org/10.22214/ijraset.2024.61000.
Pełny tekst źródłaJin, Xuan, Yuanzhi Yao i Nenghai Yu. "Efficient secure aggregation for privacy-preserving federated learning based on secret sharing". JUSTC 53, nr 4 (2023): 1. http://dx.doi.org/10.52396/justc-2022-0116.
Pełny tekst źródłaTian, Mengmeng. "An Contract Theory based Federated Learning Aggregation Algorithm in IoT Network". Journal of Physics: Conference Series 2258, nr 1 (1.04.2022): 012008. http://dx.doi.org/10.1088/1742-6596/2258/1/012008.
Pełny tekst źródłaYang, Xun, Shuwen Xiang, Changgen Peng, Weijie Tan, Yue Wang, Hai Liu i Hongfa Ding. "Federated Learning Incentive Mechanism with Supervised Fuzzy Shapley Value". Axioms 13, nr 4 (11.04.2024): 254. http://dx.doi.org/10.3390/axioms13040254.
Pełny tekst źródłaLuo, Yihang, Bei Gong, Haotian Zhu i Chong Guo. "A Trusted Federated Incentive Mechanism Based on Blockchain for 6G Network Data Security". Applied Sciences 13, nr 19 (22.09.2023): 10586. http://dx.doi.org/10.3390/app131910586.
Pełny tekst źródła