Artykuły w czasopismach na temat „FAKE VIDEOS”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „FAKE VIDEOS”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Abidin, Muhammad Indra, Ingrid Nurtanio i Andani Achmad. "Deepfake Detection in Videos Using Long Short-Term Memory and CNN ResNext". ILKOM Jurnal Ilmiah 14, nr 3 (19.12.2022): 178–85. http://dx.doi.org/10.33096/ilkom.v14i3.1254.178-185.
Pełny tekst źródłaLópez-Gil, Juan-Miguel, Rosa Gil i Roberto García. "Do Deepfakes Adequately Display Emotions? A Study on Deepfake Facial Emotion Expression". Computational Intelligence and Neuroscience 2022 (18.10.2022): 1–12. http://dx.doi.org/10.1155/2022/1332122.
Pełny tekst źródłaArunkumar, P. M., Yalamanchili Sangeetha, P. Vishnu Raja i S. N. Sangeetha. "Deep Learning for Forgery Face Detection Using Fuzzy Fisher Capsule Dual Graph". Information Technology and Control 51, nr 3 (23.09.2022): 563–74. http://dx.doi.org/10.5755/j01.itc.51.3.31510.
Pełny tekst źródłaWang, Shuting (Ada), Min-Seok Pang i Paul Pavlou. "Seeing Is Believing? How Including a Video in Fake News Influences Users’ Reporting of Fake News to Social Media Platforms". MIS Quarterly 45, nr 3 (1.09.2022): 1323–54. http://dx.doi.org/10.25300/misq/2022/16296.
Pełny tekst źródłaDeng, Liwei, Hongfei Suo i Dongjie Li. "Deepfake Video Detection Based on EfficientNet-V2 Network". Computational Intelligence and Neuroscience 2022 (15.04.2022): 1–13. http://dx.doi.org/10.1155/2022/3441549.
Pełny tekst źródłaShahar, Hadas, i Hagit Hel-Or. "Fake Video Detection Using Facial Color". Color and Imaging Conference 2020, nr 28 (4.11.2020): 175–80. http://dx.doi.org/10.2352/issn.2169-2629.2020.28.27.
Pełny tekst źródłaLin, Yih-Kai, i Hao-Lun Sun. "Few-Shot Training GAN for Face Forgery Classification and Segmentation Based on the Fine-Tune Approach". Electronics 12, nr 6 (16.03.2023): 1417. http://dx.doi.org/10.3390/electronics12061417.
Pełny tekst źródłaLiang, Xiaoyun, Zhaohong Li, Zhonghao Li i Zhenzhen Zhang. "Fake Bitrate Detection of HEVC Videos Based on Prediction Process". Symmetry 11, nr 7 (15.07.2019): 918. http://dx.doi.org/10.3390/sym11070918.
Pełny tekst źródłaPei, Pengfei, Xianfeng Zhao, Jinchuan Li, Yun Cao i Xuyuan Lai. "Vision Transformer-Based Video Hashing Retrieval for Tracing the Source of Fake Videos". Security and Communication Networks 2023 (28.06.2023): 1–16. http://dx.doi.org/10.1155/2023/5349392.
Pełny tekst źródłaDas, Rashmiranjan, Gaurav Negi i Alan F. Smeaton. "Detecting Deepfake Videos Using Euler Video Magnification". Electronic Imaging 2021, nr 4 (18.01.2021): 272–1. http://dx.doi.org/10.2352/issn.2470-1173.2021.4.mwsf-272.
Pełny tekst źródłaMaras, Marie-Helen, i Alex Alexandrou. "Determining authenticity of video evidence in the age of artificial intelligence and in the wake of Deepfake videos". International Journal of Evidence & Proof 23, nr 3 (28.10.2018): 255–62. http://dx.doi.org/10.1177/1365712718807226.
Pełny tekst źródłaJin, Xinlei, Dengpan Ye i Chuanxi Chen. "Countering Spoof: Towards Detecting Deepfake with Multidimensional Biological Signals". Security and Communication Networks 2021 (22.04.2021): 1–8. http://dx.doi.org/10.1155/2021/6626974.
Pełny tekst źródłaSanilM, Rithvika, S. Saathvik, Rithesh RaiK i Srinivas P M. "DEEPFAKE DETECTION USING EYE-BLINKING PATTERN". International Journal of Engineering Applied Sciences and Technology 7, nr 3 (1.07.2022): 229–34. http://dx.doi.org/10.33564/ijeast.2022.v07i03.036.
Pełny tekst źródłaAwotunde, Joseph Bamidele, Rasheed Gbenga Jimoh, Agbotiname Lucky Imoize, Akeem Tayo Abdulrazaq, Chun-Ta Li i Cheng-Chi Lee. "An Enhanced Deep Learning-Based DeepFake Video Detection and Classification System". Electronics 12, nr 1 (26.12.2022): 87. http://dx.doi.org/10.3390/electronics12010087.
Pełny tekst źródłaQi, Peng, Yuyan Bu, Juan Cao, Wei Ji, Ruihao Shui, Junbin Xiao, Danding Wang i Tat-Seng Chua. "FakeSV: A Multimodal Benchmark with Rich Social Context for Fake News Detection on Short Video Platforms". Proceedings of the AAAI Conference on Artificial Intelligence 37, nr 12 (26.06.2023): 14444–52. http://dx.doi.org/10.1609/aaai.v37i12.26689.
Pełny tekst źródłaLai, Zhimao, Yufei Wang, Renhai Feng, Xianglei Hu i Haifeng Xu. "Multi-Feature Fusion Based Deepfake Face Forgery Video Detection". Systems 10, nr 2 (7.03.2022): 31. http://dx.doi.org/10.3390/systems10020031.
Pełny tekst źródłaDoke, Yash. "Deep fake Detection Through Deep Learning". International Journal for Research in Applied Science and Engineering Technology 11, nr 5 (31.05.2023): 861–66. http://dx.doi.org/10.22214/ijraset.2023.51630.
Pełny tekst źródłaNoreen, Iram, Muhammad Shahid Muneer i Saira Gillani. "Deepfake attack prevention using steganography GANs". PeerJ Computer Science 8 (20.10.2022): e1125. http://dx.doi.org/10.7717/peerj-cs.1125.
Pełny tekst źródłaGarcía-Retuerta, David, Álvaro Bartolomé, Pablo Chamoso i Juan Manuel Corchado. "Counter-Terrorism Video Analysis Using Hash-Based Algorithms". Algorithms 12, nr 5 (24.05.2019): 110. http://dx.doi.org/10.3390/a12050110.
Pełny tekst źródłaMegawan, Sunario, Wulan Sri Lestari i Apriyanto Halim. "Deteksi Non-Spoofing Wajah pada Video secara Real Time Menggunakan Faster R-CNN". Journal of Information System Research (JOSH) 3, nr 3 (29.04.2022): 291–99. http://dx.doi.org/10.47065/josh.v3i3.1519.
Pełny tekst źródłaFerreira, Sara, Mário Antunes i Manuel E. Correia. "Exposing Manipulated Photos and Videos in Digital Forensics Analysis". Journal of Imaging 7, nr 7 (24.06.2021): 102. http://dx.doi.org/10.3390/jimaging7070102.
Pełny tekst źródłaWu, Nan, Xin Jin, Qian Jiang, Puming Wang, Ya Zhang, Shaowen Yao i Wei Zhou. "Multisemantic Path Neural Network for Deepfake Detection". Security and Communication Networks 2022 (11.10.2022): 1–14. http://dx.doi.org/10.1155/2022/4976848.
Pełny tekst źródłaThaseen Ikram, Sumaiya, Priya V, Shourya Chambial, Dhruv Sood i Arulkumar V. "A Performance Enhancement of Deepfake Video Detection through the use of a Hybrid CNN Deep Learning Model". International journal of electrical and computer engineering systems 14, nr 2 (27.02.2023): 169–78. http://dx.doi.org/10.32985/ijeces.14.2.6.
Pełny tekst źródłaAshish Ransom, Shashank Shekhar,. "Ethical & Legal Implications of Deep Fake Technology: A Global Overview". Proceeding International Conference on Science and Engineering 11, nr 1 (18.02.2023): 2226–35. http://dx.doi.org/10.52783/cienceng.v11i1.398.
Pełny tekst źródłaSaealal, Muhammad Salihin, Mohd Zamri Ibrahim, David J. Mulvaney, Mohd Ibrahim Shapiai i Norasyikin Fadilah. "Using cascade CNN-LSTM-FCNs to identify AI-altered video based on eye state sequence". PLOS ONE 17, nr 12 (15.12.2022): e0278989. http://dx.doi.org/10.1371/journal.pone.0278989.
Pełny tekst źródłaHubálovský, Štěpán, Pavel Trojovský, Nebojsa Bacanin i Venkatachalam K. "Evaluation of deepfake detection using YOLO with local binary pattern histogram". PeerJ Computer Science 8 (13.09.2022): e1086. http://dx.doi.org/10.7717/peerj-cs.1086.
Pełny tekst źródłaTambe, Swapnali, Anil Pawar i S. K. Yadav. "Deep fake videos identification using ANN and LSTM". Journal of Discrete Mathematical Sciences and Cryptography 24, nr 8 (17.11.2021): 2353–64. http://dx.doi.org/10.1080/09720529.2021.2014140.
Pełny tekst źródłaMuqsith, Munadhil Abdul, i Rizky Ridho Pratomo. "The Development of Fake News in the Post-Truth Age". SALAM: Jurnal Sosial dan Budaya Syar-i 8, nr 5 (22.09.2021): 1391–406. http://dx.doi.org/10.15408/sjsbs.v8i5.22395.
Pełny tekst źródłaIsmail, Aya, Marwa Elpeltagy, Mervat S. Zaki i Kamal Eldahshan. "A New Deep Learning-Based Methodology for Video Deepfake Detection Using XGBoost". Sensors 21, nr 16 (10.08.2021): 5413. http://dx.doi.org/10.3390/s21165413.
Pełny tekst źródłaIsmail, Aya, Marwa Elpeltagy, Mervat Zaki i Kamal A. ElDahshan. "Deepfake video detection: YOLO-Face convolution recurrent approach". PeerJ Computer Science 7 (21.09.2021): e730. http://dx.doi.org/10.7717/peerj-cs.730.
Pełny tekst źródłaNassif, Ali Bou, Qassim Nasir, Manar Abu Talib i Omar Mohamed Gouda. "Improved Optical Flow Estimation Method for Deepfake Videos". Sensors 22, nr 7 (24.03.2022): 2500. http://dx.doi.org/10.3390/s22072500.
Pełny tekst źródłaYavuzkilic, Semih, Abdulkadir Sengur, Zahid Akhtar i Kamran Siddique. "Spotting Deepfakes and Face Manipulations by Fusing Features from Multi-Stream CNNs Models". Symmetry 13, nr 8 (26.07.2021): 1352. http://dx.doi.org/10.3390/sym13081352.
Pełny tekst źródłaSohaib, Muhammad, i Samabia Tehseen. "Forgery detection of low quality deepfake videos". Neural Network World 33, nr 2 (2023): 85–99. http://dx.doi.org/10.14311/nnw.2023.33.006.
Pełny tekst źródłaBansal, Nency, Turki Aljrees, Dhirendra Prasad Yadav, Kamred Udham Singh, Ankit Kumar, Gyanendra Kumar Verma i Teekam Singh. "Real-Time Advanced Computational Intelligence for Deep Fake Video Detection". Applied Sciences 13, nr 5 (27.02.2023): 3095. http://dx.doi.org/10.3390/app13053095.
Pełny tekst źródłaSabah, Hanady. "Detection of Deep Fake in Face Images Using Deep Learning". Wasit Journal of Computer and Mathematics Science 1, nr 4 (31.12.2022): 94–111. http://dx.doi.org/10.31185/wjcm.92.
Pełny tekst źródłaBilohrats, Khrystyna. "PECULIARITIES OF FAKE MEDIA MESSAGES (ON THE EXAMPLE OF RUSSIAN FAKES ABOUT UKRAINE)". Bulletin of Lviv Polytechnic National University: journalism 1, nr 2 (2021): 1–10. http://dx.doi.org/10.23939/sjs2021.02.001.
Pełny tekst źródłaShalini, S. "Fake Image Detection". International Journal for Research in Applied Science and Engineering Technology 9, nr VI (15.06.2021): 1140–45. http://dx.doi.org/10.22214/ijraset.2021.35238.
Pełny tekst źródłaDutta, Hridoy Sankar, Mayank Jobanputra, Himani Negi i Tanmoy Chakraborty. "Detecting and Analyzing Collusive Entities on YouTube". ACM Transactions on Intelligent Systems and Technology 12, nr 5 (31.10.2021): 1–28. http://dx.doi.org/10.1145/3477300.
Pełny tekst źródłaShan Bian, Weiqi Luo i Jiwu Huang. "Exposing Fake Bit Rate Videos and Estimating Original Bit Rates". IEEE Transactions on Circuits and Systems for Video Technology 24, nr 12 (grudzień 2014): 2144–54. http://dx.doi.org/10.1109/tcsvt.2014.2334031.
Pełny tekst źródłaLiang, Xiaoyun, Zhaohong Li, Yiyuan Yang, Zhenzhen Zhang i Yu Zhang. "Detection of Double Compression for HEVC Videos With Fake Bitrate". IEEE Access 6 (2018): 53243–53. http://dx.doi.org/10.1109/access.2018.2869627.
Pełny tekst źródłaAlsakar, Yasmin M., Nagham E. Mekky i Noha A. Hikal. "Detecting and Locating Passive Video Forgery Based on Low Computational Complexity Third-Order Tensor Representation". Journal of Imaging 7, nr 3 (5.03.2021): 47. http://dx.doi.org/10.3390/jimaging7030047.
Pełny tekst źródłaBurgstaller, Markus, i Scott Macpherson. "Deepfakes in International Arbitration: How Should Tribunals Treat Video Evidence and Allegations of Technological Tampering?" Journal of World Investment & Trade 22, nr 5-6 (10.12.2021): 860–90. http://dx.doi.org/10.1163/22119000-12340232.
Pełny tekst źródłaShahzad, Hina Fatima, Furqan Rustam, Emmanuel Soriano Flores, Juan Luís Vidal Mazón, Isabel de la Torre Diez i Imran Ashraf. "A Review of Image Processing Techniques for Deepfakes". Sensors 22, nr 12 (16.06.2022): 4556. http://dx.doi.org/10.3390/s22124556.
Pełny tekst źródłaWagner, Travis L., i Ashley Blewer. "“The Word Real Is No Longer Real”: Deepfakes, Gender, and the Challenges of AI-Altered Video". Open Information Science 3, nr 1 (1.01.2019): 32–46. http://dx.doi.org/10.1515/opis-2019-0003.
Pełny tekst źródłaPérez Dasilva, Jesús, Koldobika Meso Ayerdi i Terese Mendiguren Galdospin. "Deepfakes on Twitter: Which Actors Control Their Spread?" Media and Communication 9, nr 1 (3.03.2021): 301–12. http://dx.doi.org/10.17645/mac.v9i1.3433.
Pełny tekst źródłaAdams, Caitlin. "“It’s So Bad It Has to be Real”: Mimic Vlogs and the Use of User-Generated Formats for Storytelling". Platform: Journal of Media and Communication 9, nr 2 (grudzień 2022): 22–36. http://dx.doi.org/10.46580/p84398.
Pełny tekst źródłaAn, Byeongseon, Hyeji Lim i Eui Chul Lee. "Fake Biometric Detection Based on Photoplethysmography Extracted from Short Hand Videos". Electronics 12, nr 17 (26.08.2023): 3605. http://dx.doi.org/10.3390/electronics12173605.
Pełny tekst źródłaS., Gayathri, Santhiya S., Nowneesh T., Sanjana Shuruthy K. i Sakthi S. "Deep fake detection using deep learning techniques". Applied and Computational Engineering 2, nr 1 (22.03.2023): 1010–19. http://dx.doi.org/10.54254/2755-2721/2/20220655.
Pełny tekst źródłaClaretta, Dyva, i Marta Wijayanengtias. "VIEWER RECEPTION TOWARD YOUTUBER'S GIVEAWAY". JOSAR (Journal of Students Academic Research) 7, nr 1 (22.05.2021): 45–57. http://dx.doi.org/10.35457/josar.v7i1.1533.
Pełny tekst źródłaRupapara, Vaibhav, Furqan Rustam, Aashir Amaar, Patrick Bernard Washington, Ernesto Lee i Imran Ashraf. "Deepfake tweets classification using stacked Bi-LSTM and words embedding". PeerJ Computer Science 7 (21.10.2021): e745. http://dx.doi.org/10.7717/peerj-cs.745.
Pełny tekst źródła