Gotowa bibliografia na temat „Facteur de transcription ATF-6”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Facteur de transcription ATF-6”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Facteur de transcription ATF-6"
FAWCETT, Timothy W., Jennifer L. MARTINDALE, Kathryn Z. GUYTON, Tsonwin HAI i Nikki J. HOLBROOK. "Complexes containing activating transcription factor (ATF)/cAMP-responsive-element-binding protein (CREB) interact with the CCAAT/enhancer-binding protein (C/EBP)–ATF composite site to regulate Gadd153 expression during the stress response". Biochemical Journal 339, nr 1 (25.03.1999): 135–41. http://dx.doi.org/10.1042/bj3390135.
Pełny tekst źródłaMori, Kazutoshi. "Divest Yourself of a Preconceived Idea: Transcription Factor ATF6 Is Not a Soluble Protein!" Molecular Biology of the Cell 21, nr 9 (maj 2010): 1435–38. http://dx.doi.org/10.1091/mbc.e09-07-0600.
Pełny tekst źródłaKeeton, Adam B., Katherine D. Bortoff, J. Lee Franklin i Joseph L. Messina. "Blockade of Rapid Versus Prolonged Extracellularly Regulated Kinase 1/2 Activation Has Differential Effects on Insulin-Induced Gene Expression". Endocrinology 146, nr 6 (1.06.2005): 2716–25. http://dx.doi.org/10.1210/en.2004-1662.
Pełny tekst źródłaSeo, Hye-Young, Yong Deuk Kim, Kyeong-Min Lee, Ae-Kyung Min, Mi-Kyung Kim, Hye-Soon Kim, Kyu-Chang Won i in. "Endoplasmic Reticulum Stress-Induced Activation of Activating Transcription Factor 6 Decreases Insulin Gene Expression via Up-Regulation of Orphan Nuclear Receptor Small Heterodimer Partner". Endocrinology 149, nr 8 (1.05.2008): 3832–41. http://dx.doi.org/10.1210/en.2008-0015.
Pełny tekst źródłaSpinello, Zaira, Luana Abballe, Elena Splendiani, Angela Di Giannatale, Felice Giangaspero, Angela Mastronuzzi, Elisabetta Ferretti, Evelina Miele i Giuseppina Catanzaro. "MEDB-09. Unraveling the role of unfolded protein response in medulloblastoma cancer stem cells". Neuro-Oncology 24, Supplement_1 (1.06.2022): i105—i106. http://dx.doi.org/10.1093/neuonc/noac079.384.
Pełny tekst źródłaFu, Lingchen, i Michael S. Kilberg. "Elevated cJUN expression and an ATF/CRE site within the ATF3 promoter contribute to activation of ATF3 transcription by the amino acid response". Physiological Genomics 45, nr 4 (15.02.2013): 127–37. http://dx.doi.org/10.1152/physiolgenomics.00160.2012.
Pełny tekst źródłaVidičević-Novaković, Sašenka, i Željka Stanojević. "Molecular mechanisms involved in endoplasmic reticulum stress development: What do we know today". Medicinski podmladak 75, nr 2 (2024): 36–42. http://dx.doi.org/10.5937/mp75-44722.
Pełny tekst źródłaRoss, Heather L., Michael R. Nonnemacher, Tricia H. Hogan, Shane J. Quiterio, Andrew Henderson, John J. McAllister, Fred C. Krebs i Brian Wigdahl. "Interaction between CCAAT/Enhancer Binding Protein and Cyclic AMP Response Element Binding Protein 1 Regulates Human Immunodeficiency Virus Type 1 Transcription in Cells of the Monocyte/Macrophage Lineage". Journal of Virology 75, nr 4 (15.02.2001): 1842–56. http://dx.doi.org/10.1128/jvi.75.4.1842-1856.2001.
Pełny tekst źródłaXu, Linhao, Yanli Bi, Yizhou Xu, Yihao Wu, Xiaoxue Du, Yixuan Mou i Jian Chen. "Suppression of CHOP Reduces Neuronal Apoptosis and Rescues Cognitive Impairment Induced by Intermittent Hypoxia by Inhibiting Bax and Bak Activation". Neural Plasticity 2021 (21.08.2021): 1–14. http://dx.doi.org/10.1155/2021/4090441.
Pełny tekst źródłaKonsavage, Wesley M., Lianqin Zhang, Yuchieh Wu i Jeffrey S. Shenberger. "Hyperoxia-induced activation of the integrated stress response in the newborn rat lung". American Journal of Physiology-Lung Cellular and Molecular Physiology 302, nr 1 (1.01.2012): L27—L35. http://dx.doi.org/10.1152/ajplung.00174.2011.
Pełny tekst źródłaRozprawy doktorskie na temat "Facteur de transcription ATF-6"
Goetz, Jean. "Etude structurale et fonctionnelle d'un facteur de transcription de la famille atf/creb". Université Louis Pasteur (Strasbourg) (1971-2008), 1996. http://www.theses.fr/1996STR13177.
Pełny tekst źródłaBAHR, ANNE. "Caracterisation et etudes fonctionnelles de plusieurs proteines associees au facteur de transcription atf-a". Université Louis Pasteur (Strasbourg) (1971-2008), 1998. http://www.theses.fr/1998STR13110.
Pełny tekst źródłaTardif, Derek. "Implication du facteur de transcription GATA-6 dans la régénération musculaire". Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=112311.
Pełny tekst źródłaKeywords. GATA-6, muscle regeneration, mdx, satellite cells
Journiac, Nathalie. "Etude du rôle du facteur de transcription RORα dans la réaction gliale". Paris 6, 2007. http://www.theses.fr/2007PA066031.
Pełny tekst źródłaGAIRE, MIREILLE. "Etude d'un facteur de transcription implique dans l'expression des genes precoces de l'adenovirus : le facteur atf-a. purification, clonage et expression des sequences codantes". Strasbourg 1, 1990. http://www.theses.fr/1990STR13214.
Pełny tekst źródłaPradeau, Karine. "Réactivation de l'herpèsvirus humain de type 6 (HHV-6) : outils de détection et mécanismes moléculaires". Limoges, 2005. http://www.theses.fr/2005LIMO0027.
Pełny tekst źródłaHuman herpesvirus 6 (HHV-6) is a widespread virus that remains for life in a latent state after primary infection. But HHV-6 may reactivate, producing many infectious particles. This reactivation seems harmless in healthy subject, but can be very serious in various contexts of immunosuppression, such as organ transplant recipients. Actually, the mechanisms allowing the maintenance of latency or contrary those involving the reactivation are unknown. The objective of this work was double. In the fist time, molecular methods to detect HHV-6 multiplication were developed: a real time quantitative PCR method and a RT-PCR assay allowing the detection of viral mRNAs associated with HHV-6 replication were carried out. In order to test these detection techniques in a context of reactivation, they were applied to blood samples from transplanted patients. The two methods were proved to be effective to highlight the reactivation of HHV-6. Then in the second time, the effect of NF-κB transcription factor on immediate early genes transcription of HHV-6 was investigated. For this purpose, a NF-κB super-repressor (IκBαMut) was transfected in cells permissive to HHV-6 growth. By inhibiting the canonical pathway of NF-κB induction, a reduction in the replication of the virus, demonstrated by a decrease in viral mRNA transcription using a quantitative RT-PCR method and by a reduction in the number of infected cells using an immunofluorescence assay, was observed. Thus an important role for NF-κB transcription factor in the multiplication of virus HHV-6 was shown
Porée, Benoît. "Effets de l'interleukine-6 (IL-6), de son récepteur soluble (sIL-6R) et du facteur de transcription Erg sur l'expression du collagène de type II dans des chondrocytes articulaires". Caen, 2007. http://www.theses.fr/2007CAEN2060.
Pełny tekst źródłaType II collagen is composed of α1(II) chains encoded by the COL2A1 gene. Alteration of this cartilage marker is a common feature of osteoarthritis. IL-6, a pro-inflammatory cytokine, needs to exert its effects in some cases, a soluble form of receptor, sIL-6R, which exerts agonistic action. This mechanism can make up for the partial or total absence of membrane anchored IL-6 receptors in some cell types, such as chondrocytes. Our study shows that IL-6 and/or sIL-6R inhibit COL2A1 gene transcription by a -63/-35 sequence. This inhibition implies Sp1 and Sp3 transcription factors whose DNA-binding activity is decreased to the -41/-33 bp site by both IL-6 and sIL-6R. Knock-down of Sp1/Sp3 by siRNA and decoy strategies were found to prevent the IL-6 and/or sIL-6R induced inhibition of COL2A1 transcription, indicating that a heterotypic Sp1/Sp3 complex is required for down-regulation of the target gene. Additionally, experiments using trichostatin A demonstrate that HDAC activity is involved in this inhibitory process, and Sp1 was shown to interact with HDAC1. In a second part, we investigated the effects of Erg that belongs to the ETS family of transcription factors and that plays a key role in cartilage formation. Indeed, we show that overexpression of Erg in rabbit articular chondrocytes, increase type II collagen production through a transcriptional control. This factor up-regulates COL2A1 gene transcription by a first intron sequence localised between + 2 127 and + 2 384 bp. On the contrary, overexpression of a dominant-negative protein restricted to the ETS domain dn-Erg, shows no effect on the COL2A1 transcriptional activity. On the other hand, dn-Erg enters in competition with the native protein and abrogates its stimulating effects. Erg also stimulates Sp1, Sp3 and Sox9 expressions, suggesting that these factors can be involved in Erg induced stimulation of COL2A1
Debuisson, Delphine. "Rétrocontrôle des réponses Th2 par l'interleukine-6 et identification d'un nouveau facteur de transcription exprimé par les lymphocytes T helper folliculaires". Doctoral thesis, Universite Libre de Bruxelles, 2014. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209158.
Pełny tekst źródłaDans un premier temps, nous avons voulu identifier les gènes dont l’expression est induite par l’IL-6, avec comme objectif une meilleure compréhension des mécanismes permettant aux lymphocytes T de se différencier en cellules Tfh.
Au cours de notre travail, nous avons identifié le facteur de transcription, MyoR (Myogenic Repressor) comme étant exprimé au sein des lymphocytes T helper et dont l’expression est induite par l’IL-6. Nos observations expérimentales ont démontré que le facteur MyoR n’est pas indispensable pour la différenciation des lymphocytes Tfh, ni pour leur fonction. Cependant, l’expression de l’ARNm codant pour MyoR pourrait être utilisée comme un biomarqueur des cellules Tfh in vitro ou in vivo.
Nous avons ensuite caractérisé la réponse immune induite in vivo par des cellules présentatrices d’antigènes issues de souris déficientes pour l’IL-6. Cette approche nous a permis de mettre en évidence le rôle immunosuppresseur de l’IL-6 sur le développement des réponses de type Th2. En effet, nous avons montré que l’injection de BMDCs (Bone Marrow derived dendritic cells) IL-6-/- dans des souris receveuses de type sauvage induisent une réponse Th2 augmentée in vivo.
Nos résultats suggèrent que l’inhibition de la réponse Th2 par l’IL-6 in vivo et in vitro pourrait impliquer la présence d’un ou de plusieurs miRNAs.
Cette inhibition pourrait être un mécanisme de rétrocontrôle afin d’éviter une exacerbation de la réponse immune Th2.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Masson, Christel. "Caractérisation de l'expression du gène KIN17 humain lors de la réponse cellulaire aux agents génotoxiques et dans certains tissus tumoraux". Paris 11, 2001. http://www.theses.fr/2001PA11T029.
Pełny tekst źródłaAll organisms are confronted by the crucial problem of protecting the integrity of the genetic material in their cells against alterations provoked by endogenous or exogenous agents. DNA damage may interfere with essential processes such as replication and transcription, thus leading to metabolic disruption or to cell death. Ihave characterized the expression profile of KIN17 gene after treatment with different genotoxic agents. KIN17 protein possesses a core region homologous to the DNA-binding domain located in the C-terminal part of the E. Coli RecA protein. RecA plays an essential role in the cellular response to radiation, in recombination and in mutagenesis. My results indicate that the human kin17 protein actively participates in the cellular response to the DNA damage produced by UVC- and γ-irradiation. The kinetics of KIN17 gene expression differs according to the nature of the genotoxic agent. Considering these results, I tried to identify the mechanisms responsible for this response to genotoxic stress by using cells mutated in the p53 gene or cells expressing a dominant negative mutant for ATF2. I noticed that the increase in KIN17 gene expression was independent of p53. The transcription factor ATF2, on the other hand, appeared to be involved in the control of KIN17 gene expression after γ-irradiation. Using cells deficient for nucleotide excision repair (NER), I have demonstrated that an active NER is necessary for the transient increase in KIN17 gene expression after UVC-irradiation. Taken together, these data indicate the Participation of KIN17 gene in a signalling pathway that may help to counterbalance the deleterious effects of genotoxic agents. Prelirninary results on human hepatocarcinoma show increased expression levels of KIN17 gene during tumoral progression
Hermitte, Stephanie. "Caractérisation de la différenciation de l'endoderme primitif : Coopération entre la voie de signalisation RTK-FGF et le facteur de transcription Gata 6". Thesis, Université Clermont Auvergne (2017-2020), 2017. http://www.theses.fr/2017CLFAS014.
Pełny tekst źródłaAt E3.5 days of development (E3.5), mouse embryo consists of a monolayer of external cells corresponding to Trophectoderme (TE) and of an intern cell mass (ICM), heterogeneous, constituted by two subpopulations of precursory cells: epiblastic cells (Epi) and primitive endoderm cells (EPr). NANOG, an Epi marker and GATA6, a PrE marker, are co-expressed at E3,5 in the MCI and then adopt an exclusive expression within their respective lineage. EPr differentiation requires both expression of GATA6 and RTK pathway, activated by FGF ligand, in order to induce late markers Sox17 and Gata4 expression.First, I studied the relation GATA6/RTK during this process to understand the mechanism of induction of these target genes during final EPr differentiation. I used embryonic stem cells ES WT or Gata6 mutants (ES Gata6-/-), in which I transfected various Gata6 mutant constructions on different residues characterized as potentially phosphorylable by the RTK pathway. So, I analyzed protein expression of Sox17 and Gata4 target genes as well as RNA expression of characteristic genes expressed in the EPr in different inhibition conditions of RTK pathway. So, I was able to highlight that the transmission of the signal is made through the FGF receptor (FGFR1) and that there is compensation between RTK-MEK-ERK and RTK-PI3K pathways highlighted by later Gata6 overexpression of certain mutant forms. Finally, residue S34, S37 and T509 seems to cooperate, through a mechanism not detailed for the moment, for the induction of the EPr target genes.Then, I was interested to phenotypically characterize the role of Dickkopf1 (DKK1), an inhibitor of the WNT/β-catenin pathway, and NOGGIN, an inhibitor of the Bone Morphogenic Protein (BMP) pathway during the EPr differentiation in parietal endoderm (EP) and visceral (EV). Using models of mouse KO for Dkk1 and Noggin, met in pure background C57Bl6, I was able to observe that OCT4 expression was maintained within the Dkk1-/-, and Dkk1-/- Noggin-/- embryos. However, the potential compensation or cooperation mechanism of these two markers is not understanding well for the moment and deserves the analysis of a largest mutant embryos number
Książki na temat "Facteur de transcription ATF-6"
Ladunga, Istvan, red. Computational Biology of Transcription Factor Binding. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60761-854-6.
Pełny tekst źródłaRaju, Raghavan, i Irshad H. Chaudry. The host response to hypoxia in the critically ill. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0305.
Pełny tekst źródłaAlves, Ines Teles, Jan Trapman i Guido Jenster. Molecular biology of prostate cancer. Redaktor James W. F. Catto. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780199659579.003.0059.
Pełny tekst źródłaCzęści książek na temat "Facteur de transcription ATF-6"
Hai, Tsonwin, Johnna Dominick i Kun Huang. "ATF3 Activating Transcription Factor 3". W Encyclopedia of Signaling Molecules, 467–74. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-67199-4_612.
Pełny tekst źródłaBiswas-Fiss, Esther E., Stephanie Affet, Malissa Ha, Takaya Satoh, Joe B. Blumer, Stephen M. Lanier, Ana Kasirer-Friede i in. "ATF3 Activating Transcription Factor 3". W Encyclopedia of Signaling Molecules, 169–76. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0461-4_612.
Pełny tekst źródłaShouksmith, Andrew E., i Patrick T. Gunning. "Chapter 6. Targeting Signal Transducer and Activator of Transcripion (STAT) 3 with Small Molecules". W Small-molecule Transcription Factor Inhibitors in Oncology, 147–68. Cambridge: Royal Society of Chemistry, 2018. http://dx.doi.org/10.1039/9781782624011-00147.
Pełny tekst źródłaMendonca, Patricia, i Karam F. A. Soliman. "Nutraceutical Activation of the Transcription Factor Nrf2 as a Potential Approach for Modulation of Aging". W Nutraceuticals for Aging and Anti-Aging, 113–31. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003110866-6.
Pełny tekst źródłaHocke, G., G. Baffet, M. Z. Cui, T. Brechner, D. Barry, A. Goel, R. Fletcher, C. Abney, M. Hattori i H. Fey. "Transcriptional Control of Liver Acute Phase Genes by Interleukin-6 and Leukemia Inhibitory Factor". W Molecular Aspects of Inflammation, 147–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76412-7_12.
Pełny tekst źródłaAkira, Shizuo, Hiroshi Isshiki, Toshihiro Nakajima, Shigemi Kinoshita, Yukihiro Nishio, Shunji Natsuka i Tadamitsu Kishimoto. "Regulation of Expression of the Interleukin 6 Gene: Structure and Function of the Transcription Factor NF-IL6". W Novartis Foundation Symposia, 47–67. Chichester, UK: John Wiley & Sons, Ltd., 2007. http://dx.doi.org/10.1002/9780470514269.ch4.
Pełny tekst źródłaKojima, Hirotada, Hiroyuki Kunimoto, Toshiaki Inoue i Koichi Nakajima. "Interleukin-6 Induces Premature Senescence Involving Signal Transducer and Activator of Transcription 3 and Insulin-Like Growth Factor-Binding Protein 5". W Tumor Dormancy, Quiescence, and Senescence, Volume 2, 53–60. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-7726-2_6.
Pełny tekst źródłaHai, T., D. Lu i C. C. Wolford. "TRANSCRIPTION FACTORS | ATF". W Encyclopedia of Respiratory Medicine, 257–60. Elsevier, 2006. http://dx.doi.org/10.1016/b0-12-370879-6/00388-4.
Pełny tekst źródłaJackson, Stephen p. "Identification and characterization of eukaryotic transcription factors". W Gene Transcription, 189–242. Oxford University PressOxford, 1993. http://dx.doi.org/10.1093/oso/9780199632923.003.0006.
Pełny tekst źródła"ATF2 (activating transcription factor)". W Encyclopedia of Genetics, Genomics, Proteomics and Informatics, 156. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6754-9_1292.
Pełny tekst źródłaStreszczenia konferencji na temat "Facteur de transcription ATF-6"
Chen, B., J. Wang, L. Shang i J. Solway. "Krüppel-Like Factor 6 Gene Expression Is Regulated by GATA5 Transcription Factor". W American Thoracic Society 2019 International Conference, May 17-22, 2019 - Dallas, TX. American Thoracic Society, 2019. http://dx.doi.org/10.1164/ajrccm-conference.2019.199.1_meetingabstracts.a3964.
Pełny tekst źródłaLiu, Ka, Richard L. Smith, Trang Nguyen-Vu, Nicholes R. Candelaria, Colin M. Rogerson, W. Evan Johnson, Edwin Cheung i in. "Abstract 3107: Runt-related transcription factor 1 (RUNX1) is involved in transcriptional repression by estrogen receptor and breast cancer cell proliferation." W Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-3107.
Pełny tekst źródłaWu, Q. Y., B. R. Bahnak, L. Coulombel, J. P. Caen, G. Pietu i D. Meyer. "VON WILLEBRAND FACTOR mRNA IS SEVERELY REDUCED IN PIGS WITH HOMOZYGOUS VON WILLEBRAND DISEASE". W XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644113.
Pełny tekst źródłaLee, Seong-Ho, Jae Hoon Bahn, Nichelle Whitlock i Seung J. Baek. "Abstract 2035: Activating transcription factor 2 (ATF2) controls tolfenamic acid-induced ATF3 expression via MAP kinase pathways". W Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.am2011-2035.
Pełny tekst źródłaStegmaier, Kimberly, Brian Crompton, Jonathan Jessneck, Kenneth Ross, Supriya Gupta, Lynn Ver Plank, Wendy Winckler i Nicola Tolliday. "Abstract LB-240: Modulating transcription factor abnormalities in pediatric cancer". W Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.am2011-lb-240.
Pełny tekst źródłade Beyer, D., F. Kraus, D. Mayr, A. Chelariu-Raicu, J. Reichenbach, N. E. Topalov, C. Tauber i in. "Prognostische Relevanz des activating transcription factor 4 (ATF4) im Ovarialkarzinom". W 65. Kongress der Deutschen Gesellschaft für Gynäkologie und Geburtshilfe e. V. Georg Thieme Verlag KG, 2024. http://dx.doi.org/10.1055/s-0044-1790669.
Pełny tekst źródłaDixit, VM. "Abstract BS1-1: Transcription factor stability and stem cell maintenance". W Abstracts: 2016 San Antonio Breast Cancer Symposium; December 6-10, 2016; San Antonio, Texas. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.sabcs16-bs1-1.
Pełny tekst źródłaSt. Clair, Caryn M., Stephanie L. Wethington, Maria Bisogna, Fanny Dao, Petar Jelinic i Douglas A. Levine. "Abstract 3158: Transcription factor SOX11 decreases viability in ovarian carcinoma cells." W Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-3158.
Pełny tekst źródłaLee, Kyung Hee, Sung Ae Koh, Ha Young Lee, Min Kyoung Kim, Kyeong Ok Kim, Se Young Lee, Byung Ik Jang i in. "Abstract 998: Downregulation of survivin suppresses uPA through transcription factor JunB". W Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.am2011-998.
Pełny tekst źródłaYu, Mei, David Zloty, Robert H. Bell, Anne Haegert, Nicholas Carr, Jerry Shapiro, Bryce Cowan, Larry Warshawski i Kevin J. McElwee. "Abstract 241: Transcription factor RBP-J-mediated signaling regulates basal cell carcinoma growth". W Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.am2011-241.
Pełny tekst źródłaRaporty organizacyjne na temat "Facteur de transcription ATF-6"
Pichersky, Eran, Alexander Vainstein i Natalia Dudareva. Scent biosynthesis in petunia flowers under normal and adverse environmental conditions. United States Department of Agriculture, styczeń 2014. http://dx.doi.org/10.32747/2014.7699859.bard.
Pełny tekst źródłaArazi, Tzahi, Vivian Irish i Asaph Aharoni. Micro RNA Targeted Transcription Factors for Fruit Quality Improvement. United States Department of Agriculture, lipiec 2008. http://dx.doi.org/10.32747/2008.7592651.bard.
Pełny tekst źródłaFromm, Hillel, Paul Michael Hasegawa i Aaron Fait. Calcium-regulated Transcription Factors Mediating Carbon Metabolism in Response to Drought. United States Department of Agriculture, czerwiec 2013. http://dx.doi.org/10.32747/2013.7699847.bard.
Pełny tekst źródłaBarg, Rivka, Erich Grotewold i Yechiam Salts. Regulation of Tomato Fruit Development by Interacting MYB Proteins. United States Department of Agriculture, styczeń 2012. http://dx.doi.org/10.32747/2012.7592647.bard.
Pełny tekst źródłaFunkenstein, Bruria, i Shaojun (Jim) Du. Interactions Between the GH-IGF axis and Myostatin in Regulating Muscle Growth in Sparus aurata. United States Department of Agriculture, marzec 2009. http://dx.doi.org/10.32747/2009.7696530.bard.
Pełny tekst źródłaEshed-Williams, Leor, i Daniel Zilberman. Genetic and cellular networks regulating cell fate at the shoot apical meristem. United States Department of Agriculture, styczeń 2014. http://dx.doi.org/10.32747/2014.7699862.bard.
Pełny tekst źródłaChen, Junping, Zach Adam i Arie Admon. The Role of FtsH11 Protease in Chloroplast Biogenesis and Maintenance at Elevated Temperatures in Model and Crop Plants. United States Department of Agriculture, maj 2013. http://dx.doi.org/10.32747/2013.7699845.bard.
Pełny tekst źródłaPrusky, Dov, i Jeffrey Rollins. Modulation of pathogenicity of postharvest pathogens by environmental pH. United States Department of Agriculture, grudzień 2006. http://dx.doi.org/10.32747/2006.7587237.bard.
Pełny tekst źródłaLevy, Avraham A., i Virginia Walbot. Regulation of Transposable Element Activities during Plant Development. United States Department of Agriculture, sierpień 1992. http://dx.doi.org/10.32747/1992.7568091.bard.
Pełny tekst źródłaCoplin, David, Isaac Barash i Shulamit Manulis. Role of Proteins Secreted by the Hrp-Pathways of Erwinia stewartii and E. herbicola pv. gypsophilae in Eliciting Water-Soaking Symptoms and Initiating Galls. United States Department of Agriculture, czerwiec 2001. http://dx.doi.org/10.32747/2001.7580675.bard.
Pełny tekst źródła