Artykuły w czasopismach na temat „Fabrication of polymeric scaffolds”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Fabrication of polymeric scaffolds”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Abdelaziz, Ahmed G., Hassan Nageh, Sara M. Abdo, Mohga S. Abdalla, Asmaa A. Amer, Abdalla Abdal-hay i Ahmed Barhoum. "A Review of 3D Polymeric Scaffolds for Bone Tissue Engineering: Principles, Fabrication Techniques, Immunomodulatory Roles, and Challenges". Bioengineering 10, nr 2 (3.02.2023): 204. http://dx.doi.org/10.3390/bioengineering10020204.
Pełny tekst źródłaKotrotsos, Athanasios, Prokopis Yiallouros i Vassilis Kostopoulos. "Fabrication and Characterization of Polylactic Acid Electrospun Scaffolds Modified with Multi-Walled Carbon Nanotubes and Hydroxyapatite Nanoparticles". Biomimetics 5, nr 3 (2.09.2020): 43. http://dx.doi.org/10.3390/biomimetics5030043.
Pełny tekst źródłaDhandayuthapani, Brahatheeswaran, Yasuhiko Yoshida, Toru Maekawa i D. Sakthi Kumar. "Polymeric Scaffolds in Tissue Engineering Application: A Review". International Journal of Polymer Science 2011 (2011): 1–19. http://dx.doi.org/10.1155/2011/290602.
Pełny tekst źródłaTan, K. H., C. K. Chua, K. F. Leong, M. W. Naing i C. M. Cheah. "Fabrication and characterization of three-dimensional poly(ether-ether-ketone)/-hydroxyapatite biocomposite scaffolds using laser sintering". Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 219, nr 3 (1.03.2005): 183–94. http://dx.doi.org/10.1243/095441105x9345.
Pełny tekst źródłaWang, Pei-Jiang, Nicola Ferralis, Claire Conway, Jeffrey C. Grossman i Elazer R. Edelman. "Strain-induced accelerated asymmetric spatial degradation of polymeric vascular scaffolds". Proceedings of the National Academy of Sciences 115, nr 11 (26.02.2018): 2640–45. http://dx.doi.org/10.1073/pnas.1716420115.
Pełny tekst źródłaIto, Masashi, i Masami Okamoto. "Structure and properties of 3D resorbable scaffolds based on poly(L-lactide) via salt-leaching combined with phase separation". International Journal of Hydrology 7, nr 2 (10.05.2023): 73–76. http://dx.doi.org/10.15406/ijh.2023.07.00341.
Pełny tekst źródłaBikuna-Izagirre, Maria, Javier Aldazabal i Jacobo Paredes. "Gelatin Blends Enhance Performance of Electrospun Polymeric Scaffolds in Comparison to Coating Protocols". Polymers 14, nr 7 (24.03.2022): 1311. http://dx.doi.org/10.3390/polym14071311.
Pełny tekst źródłaScaffaro, Roberto, Francesco Lopresti, Andrea Maio, Fiorenza Sutera i Luigi Botta. "Development of Polymeric Functionally Graded Scaffolds: A Brief Review". Journal of Applied Biomaterials & Functional Materials 15, nr 2 (16.12.2016): 107–21. http://dx.doi.org/10.5301/jabfm.5000332.
Pełny tekst źródłaRatheesh, Greeshma, Jayarama Reddy Venugopal, Amutha Chinappan, Hariharan Ezhilarasu, Asif Sadiq i Seeram Ramakrishna. "3D Fabrication of Polymeric Scaffolds for Regenerative Therapy". ACS Biomaterials Science & Engineering 3, nr 7 (5.01.2017): 1175–94. http://dx.doi.org/10.1021/acsbiomaterials.6b00370.
Pełny tekst źródłaLi, Jia Shen, Yi Li, Lin Li, Arthur F. T. Mak, Frank Ko i Ling Qin. "Fabrication of Poly(L-Latic Acid) Scaffolds with Wool Keratin for Osteoblast Cultivation". Advanced Materials Research 47-50 (czerwiec 2008): 845–48. http://dx.doi.org/10.4028/www.scientific.net/amr.47-50.845.
Pełny tekst źródłaLiu, Tianqi, Bo Yang, Wenqing Tian, Xianglin Zhang i Bin Wu. "Cryogenic Coaxial Printing for 3D Shell/Core Tissue Engineering Scaffold with Polymeric Shell and Drug-Loaded Core". Polymers 14, nr 9 (22.04.2022): 1722. http://dx.doi.org/10.3390/polym14091722.
Pełny tekst źródłaLari, Alireza, Naznin Sultana i Chin Fhong Soon. "Biocomposites conductive scaffold based on PEDOT:PSS/nHA/chitosan/PCL: Fabrication and characterization". Malaysian Journal of Fundamental and Applied Sciences 15, nr 2 (16.04.2019): 146–49. http://dx.doi.org/10.11113/mjfas.v15n2.1201.
Pełny tekst źródłaMinh, Ho Hieu, Nguyen Thi Hiep, Nguyen Dai Hai i Vo Van Toi. "Fabrication of Polycaprolactone/Polyurethane Loading Conjugated Linoleic Acid and Its Antiplatelet Adhesion". International Journal of Biomaterials 2017 (2017): 1–7. http://dx.doi.org/10.1155/2017/5690625.
Pełny tekst źródłaBazgir, Morteza, Wei Zhang, Ximu Zhang, Jacobo Elies, Morvarid Saeinasab, Phil Coates, Mansour Youseffi i Farshid Sefat. "Fabrication and Characterization of PCL/PLGA Coaxial and Bilayer Fibrous Scaffolds for Tissue Engineering". Materials 14, nr 21 (22.10.2021): 6295. http://dx.doi.org/10.3390/ma14216295.
Pełny tekst źródłaAguado, María, Laura Saldaña, Eduardo Pérez del Río, Judith Guasch, Marc Parera, Alba Córdoba, Joaquín Seras-Franzoso i in. "Polylactide, Processed by a Foaming Method Using Compressed Freon R134a, for Tissue Engineering". Polymers 13, nr 20 (9.10.2021): 3453. http://dx.doi.org/10.3390/polym13203453.
Pełny tekst źródłaKhan, Ferdous, Masaru Tanaka i Sheikh Rafi Ahmad. "Fabrication of polymeric biomaterials: a strategy for tissue engineering and medical devices". Journal of Materials Chemistry B 3, nr 42 (2015): 8224–49. http://dx.doi.org/10.1039/c5tb01370d.
Pełny tekst źródłaZhang, Junchuan, Hong Zhang, Linbo Wu i Jiandong Ding. "Fabrication of three dimensional polymeric scaffolds with spherical pores". Journal of Materials Science 41, nr 6 (17.02.2006): 1725–31. http://dx.doi.org/10.1007/s10853-006-2873-7.
Pełny tekst źródłaChung, Ren-Jei, Ming-Fa Hsieh, Li-Hsiang Perng, Yih-Lin Cheng i Tuan-Jung Hsu. "MESHED SCAFFOLDS MADE OF α, α′ -BIS(2-HYDROXYETHYL METHACRYLATE) POLY(ETHYLENE GLYCOL) THROUGH 3D STEREOLITHOGRAPHY". Biomedical Engineering: Applications, Basis and Communications 25, nr 05 (październik 2013): 1340002. http://dx.doi.org/10.4015/s1016237213400024.
Pełny tekst źródłaAslam Khan, Muhammad Umar, Hassan Mehboob, Saiful Izwan Abd Razak, Mohd Yazid Yahya, Abdul Halim Mohd Yusof, Muhammad Hanif Ramlee, T. Joseph Sahaya Anand, Rozita Hassan, Athar Aziz i Rashid Amin. "Development of Polymeric Nanocomposite (Xyloglucan-co-Methacrylic Acid/Hydroxyapatite/SiO2) Scaffold for Bone Tissue Engineering Applications—In-Vitro Antibacterial, Cytotoxicity and Cell Culture Evaluation". Polymers 12, nr 6 (29.05.2020): 1238. http://dx.doi.org/10.3390/polym12061238.
Pełny tekst źródłaWibowo, Arie, Cian Vyas, Glen Cooper, Fitriyatul Qulub, Rochim Suratman, Andi Isra Mahyuddin, Tatacipta Dirgantara i Paulo Bartolo. "3D Printing of Polycaprolactone–Polyaniline Electroactive Scaffolds for Bone Tissue Engineering". Materials 13, nr 3 (22.01.2020): 512. http://dx.doi.org/10.3390/ma13030512.
Pełny tekst źródłaMorouço, Pedro, Sara Biscaia, Tânia Viana, Margarida Franco, Cândida Malça, Artur Mateus, Carla Moura, Frederico C. Ferreira, Geoffrey Mitchell i Nuno M. Alves. "Fabrication of Poly(ε-caprolactone) Scaffolds Reinforced with Cellulose Nanofibers, with and without the Addition of Hydroxyapatite Nanoparticles". BioMed Research International 2016 (2016): 1–10. http://dx.doi.org/10.1155/2016/1596157.
Pełny tekst źródłaJordan, Alex M., Vidya Viswanath, Si-Eun Kim, Jonathan K. Pokorski i LaShanda T. J. Korley. "Processing and surface modification of polymer nanofibers for biological scaffolds: a review". Journal of Materials Chemistry B 4, nr 36 (2016): 5958–74. http://dx.doi.org/10.1039/c6tb01303a.
Pełny tekst źródłaYang, Jiong, Hexin Yue, Wajira Mirihanage i Paulo Bartolo. "Multi-Stage Thermal Modelling of Extrusion-Based Polymer Additive Manufacturing". Polymers 15, nr 4 (8.02.2023): 838. http://dx.doi.org/10.3390/polym15040838.
Pełny tekst źródłaPecorini, Gianni, Simona Braccini, Gianluca Parrini, Federica Chiellini i Dario Puppi. "Additive Manufacturing of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/Poly(D,L-lactide-co-glycolide) Biphasic Scaffolds for Bone Tissue Regeneration". International Journal of Molecular Sciences 23, nr 7 (31.03.2022): 3895. http://dx.doi.org/10.3390/ijms23073895.
Pełny tekst źródłaCapes, J. S., H. Y. Ando i R. E. Cameron. "Fabrication of polymeric scaffolds with a controlled distribution of pores". Journal of Materials Science: Materials in Medicine 16, nr 12 (grudzień 2005): 1069–75. http://dx.doi.org/10.1007/s10856-005-4708-5.
Pełny tekst źródłaBoffito, Monica, Susanna Sartori i Gianluca Ciardelli. "Polymeric scaffolds for cardiac tissue engineering: requirements and fabrication technologies". Polymer International 63, nr 1 (15.09.2013): 2–11. http://dx.doi.org/10.1002/pi.4608.
Pełny tekst źródłaMohammadzadehmoghadam, Soheila, Catherine F. LeGrand, Chee-Wai Wong, Beverley F. Kinnear, Yu Dong i Deirdre R. Coombe. "Fabrication and Evaluation of Electrospun Silk Fibroin/Halloysite Nanotube Biomaterials for Soft Tissue Regeneration". Polymers 14, nr 15 (25.07.2022): 3004. http://dx.doi.org/10.3390/polym14153004.
Pełny tekst źródłaDemina, Tatiana S., Evgeniy N. Bolbasov, Maria A. Peshkova, Yuri M. Efremov, Polina Y. Bikmulina, Aisylu V. Birdibekova, Tatiana N. Popyrina i in. "Electrospinning vs. Electro-Assisted Solution Blow Spinning for Fabrication of Fibrous Scaffolds for Tissue Engineering". Polymers 14, nr 23 (1.12.2022): 5254. http://dx.doi.org/10.3390/polym14235254.
Pełny tekst źródłaSahi, Ajay Kumar, Neelima Varshney, Suruchi Poddar, Shravanya Gundu i Sanjeev Kumar Mahto. "Fabrication and Characterization of Silk Fibroin-Based Nanofibrous Scaffolds Supplemented with Gelatin for Corneal Tissue Engineering". Cells Tissues Organs 210, nr 3 (2021): 173–94. http://dx.doi.org/10.1159/000515946.
Pełny tekst źródłaKandi, Rudranarayan, Pulak Mohan Pandey, Misba Majood i Sujata Mohanty. "Fabrication and characterization of customized tubular scaffolds for tracheal tissue engineering by using solvent based 3D printing on predefined template". Rapid Prototyping Journal 27, nr 2 (1.02.2021): 421–28. http://dx.doi.org/10.1108/rpj-08-2020-0186.
Pełny tekst źródłaChung, Johnson H. Y., Sepidar Sayyar i Gordon G. Wallace. "Effect of Graphene Addition on Polycaprolactone Scaffolds Fabricated Using Melt-Electrowriting". Polymers 14, nr 2 (13.01.2022): 319. http://dx.doi.org/10.3390/polym14020319.
Pełny tekst źródłaDomingos, Marco, Dinuccio Dinucci, Stefania Cometa, Michele Alderighi, Paulo Jorge Bártolo i Federica Chiellini. "Polycaprolactone Scaffolds Fabricated via Bioextrusion for Tissue Engineering Applications". International Journal of Biomaterials 2009 (2009): 1–9. http://dx.doi.org/10.1155/2009/239643.
Pełny tekst źródłaÁlvarez-Suarez, Alan Saúl, Eduardo Alberto López-Maldonado, Olivia A. Graeve, Fabián Martinez-Pallares, Luis Enrique Gómez-Pineda, Mercedes Teresita Oropeza-Guzmán, Ana Leticia Iglesias, Theodore Ng, Eduardo Serena-Gómez i Luis Jesús Villarreal-Gómez. "Fabrication of porous polymeric structures using a simple sonication technique for tissue engineering". Journal of Polymer Engineering 37, nr 9 (27.11.2017): 943–51. http://dx.doi.org/10.1515/polyeng-2016-0423.
Pełny tekst źródłaRojas-Rojas, Laura, María Laura Espinoza-Álvarez, Silvia Castro-Piedra, Andrea Ulloa-Fernández, Walter Vargas-Segura i Teodolito Guillén-Girón. "Muscle-like Scaffolds for Biomechanical Stimulation in a Custom-Built Bioreactor". Polymers 14, nr 24 (11.12.2022): 5427. http://dx.doi.org/10.3390/polym14245427.
Pełny tekst źródłaContreras-Cáceres, Rafael, Laura Cabeza, Gloria Perazzoli, Amelia Díaz, Juan Manuel López-Romero, Consolación Melguizo i Jose Prados. "Electrospun Nanofibers: Recent Applications in Drug Delivery and Cancer Therapy". Nanomaterials 9, nr 4 (24.04.2019): 656. http://dx.doi.org/10.3390/nano9040656.
Pełny tekst źródłaKamboj, Nikhil, Antonia Ressler i Irina Hussainova. "Bioactive Ceramic Scaffolds for Bone Tissue Engineering by Powder Bed Selective Laser Processing: A Review". Materials 14, nr 18 (16.09.2021): 5338. http://dx.doi.org/10.3390/ma14185338.
Pełny tekst źródłaHamedani, Yasaman, Samik Chakraborty, Akash Sabarwal, Soumitro Pal, Sankha Bhowmick i Murugabaskar Balan. "Novel Honokiol-eluting PLGA-based scaffold effectively restricts the growth of renal cancer cells". PLOS ONE 15, nr 12 (17.12.2020): e0243837. http://dx.doi.org/10.1371/journal.pone.0243837.
Pełny tekst źródłaXu, Shanglong, Yue Yang, Xibin Wang i Chaofeng Wang. "Branched Channel Scaffolds Fabricated by SFF for Direct Cell Growth Observations". Journal of Bioactive and Compatible Polymers 24, nr 1_suppl (maj 2009): 63–74. http://dx.doi.org/10.1177/0883911509103602.
Pełny tekst źródłaSalehi, Majid, i Sahar Molzemi. "Fabrication and Mechanical Properties of Chitosan/FHA Scaffolds". Advances in Polymer Technology 2023 (4.07.2023): 1–6. http://dx.doi.org/10.1155/2023/2758621.
Pełny tekst źródłaAwasthi, Ankit, Monica Gulati, Bimlesh Kumar, Jaskiran Kaur, Sukriti Vishwas, Rubiya Khursheed, Omji Porwal i in. "Recent Progress in Development of Dressings Used for Diabetic Wounds with Special Emphasis on Scaffolds". BioMed Research International 2022 (4.07.2022): 1–43. http://dx.doi.org/10.1155/2022/1659338.
Pełny tekst źródłaOstrowska, B., J. Jaroszewicz, E. Zaczynska, W. Tomaszewski, W. Swieszkowski i K. J. Kurzydlowsk. "Evaluation of 3D hybrid microfiber/nanofiber scaffolds for bone tissue engineering". Bulletin of the Polish Academy of Sciences Technical Sciences 62, nr 3 (1.09.2014): 551–56. http://dx.doi.org/10.2478/bpasts-2014-0059.
Pełny tekst źródłaTrifanova, Ekaterina M., Maria A. Khvorostina, Aleksandra O. Mariyanats, Anastasia V. Sochilina, Maria E. Nikolaeva, Evgeny V. Khaydukov, Roman A. Akasov i Vladimir K. Popov. "Natural and Synthetic Polymer Scaffolds Comprising Upconversion Nanoparticles as a Bioimaging Platform for Tissue Engineering". Molecules 27, nr 19 (3.10.2022): 6547. http://dx.doi.org/10.3390/molecules27196547.
Pełny tekst źródłaGonzález-Henríquez, Carmen M., Fernando E. Rodríguez-Umanzor, Nicolas F. Acuña-Ruiz, Gloria E. Vera-Rojas, Claudio Terraza-Inostroza, Nicolas A. Cohn-Inostroza, Andrés Utrera, Mauricio A. Sarabia-Vallejos i Juan Rodríguez-Hernández. "Fabrication and Testing of Multi-Hierarchical Porous Scaffolds Designed for Bone Regeneration via Additive Manufacturing Processes". Polymers 14, nr 19 (27.09.2022): 4041. http://dx.doi.org/10.3390/polym14194041.
Pełny tekst źródłaAhmad Hariza, Ahmad Mus’ab, Mohd Heikal Mohd Yunus, Mh Busra Fauzi, Jaya Kumar Murthy, Yasuhiko Tabata i Yosuke Hiraoka. "The Fabrication of Gelatin–Elastin–Nanocellulose Composite Bioscaffold as a Potential Acellular Skin Substitute". Polymers 15, nr 3 (3.02.2023): 779. http://dx.doi.org/10.3390/polym15030779.
Pełny tekst źródłaWang, Z., W. J. Lee, B. T. H. Koh, M. Hong, W. Wang, P. N. Lim, J. Feng, L. S. Park, M. Kim i E. S. Thian. "Functional regeneration of tendons using scaffolds with physical anisotropy engineered via microarchitectural manipulation". Science Advances 4, nr 10 (październik 2018): eaat4537. http://dx.doi.org/10.1126/sciadv.aat4537.
Pełny tekst źródłaBaskapan, Büsra, i Anthony Callanan. "Electrospinning Fabrication Methods to Incorporate Laminin in Polycaprolactone for Kidney Tissue Engineering". Tissue Engineering and Regenerative Medicine 19, nr 1 (29.10.2021): 73–82. http://dx.doi.org/10.1007/s13770-021-00398-1.
Pełny tekst źródłaSalerno, Aurelio, Giuseppe Cesarelli, Parisa Pedram i Paolo Antonio Netti. "Modular Strategies to Build Cell-Free and Cell-Laden Scaffolds towards Bioengineered Tissues and Organs". Journal of Clinical Medicine 8, nr 11 (1.11.2019): 1816. http://dx.doi.org/10.3390/jcm8111816.
Pełny tekst źródłaArifin, Nurulhuda, Izman Sudin, Nor Hasrul Akhmal Ngadiman i Mohamad Shaiful Ashrul Ishak. "A Comprehensive Review of Biopolymer Fabrication in Additive Manufacturing Processing for 3D-Tissue-Engineering Scaffolds". Polymers 14, nr 10 (23.05.2022): 2119. http://dx.doi.org/10.3390/polym14102119.
Pełny tekst źródłaÖzcan, Mutlu, Dachamir Hotza, Márcio Celso Fredel, Ariadne Cruz i Claudia Angela Maziero Volpato. "Materials and Manufacturing Techniques for Polymeric and Ceramic Scaffolds Used in Implant Dentistry". Journal of Composites Science 5, nr 3 (11.03.2021): 78. http://dx.doi.org/10.3390/jcs5030078.
Pełny tekst źródłaGhosh, Sougata, i Thomas Jay Webster. "Metallic Nanoscaffolds as Osteogenic Promoters: Advances, Challenges and Scope". Metals 11, nr 9 (29.08.2021): 1356. http://dx.doi.org/10.3390/met11091356.
Pełny tekst źródła