Rozprawy doktorskie na temat „Fabrication of polymeric scaffolds”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych rozpraw doktorskich naukowych na temat „Fabrication of polymeric scaffolds”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj rozprawy doktorskie z różnych dziedzin i twórz odpowiednie bibliografie.
Akbarzadeh, Rosa. "Developing Hierarchical Polymeric Scaffolds for Bone Tissue Engineering". Miami University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=miami1376962498.
Pełny tekst źródłaMinton, Joshua A. "Design, Fabrication, and Analysis of Polymer Scaffolds for Use in Bonce Tissue Engineering". Miami University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=miami1377002320.
Pełny tekst źródłaLi, Shan. "AMINO ACID-BASED POLYMERIC SCAFFOLD FABRICATION AND MODIFICATION FOR BONE REGENERATION APPLICATIONS". University of Akron / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=akron1524792119666267.
Pełny tekst źródłaSultana, Naznin. "Fabrication of PHBV and PHBV-based composite tissue engineering scaffolds through the emulsion freezing/freeze-drying process andevaluation of the scaffolds". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B43703665.
Pełny tekst źródłaSultana, Naznin. "Fabrication of PHBV and PHBV-based composite tissue engineering scaffolds through the emulsion freezing/freeze-drying process and evaluation of the scaffolds". Click to view the E-thesis via HKUTO, 2009. http://sunzi.lib.hku.hk/hkuto/record/B43703665.
Pełny tekst źródłaTollon, Michael H. "Fabrication of coated biodegradable polymer scaffolds and their effects on murine embryonic stem cells". [Gainesville, Fla.] : University of Florida, 2005. http://purl.fcla.edu/fcla/etd/UFE0010286.
Pełny tekst źródłaMohamad, Yunos Darmawati. "Fabrication and characterisation of 3-D porous bioactive glass-ceramic/polymer composite scaffolds for tissue engineering". Thesis, Imperial College London, 2010. http://hdl.handle.net/10044/1/6034.
Pełny tekst źródłaCaves, Jeffrey Morris. "Architecturally defined scaffolds from synthetic collagen and elastin analogues for the fabrication of bioengineered tissues". Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/31731.
Pełny tekst źródłaCommittee Chair: Elliot L. Chaikof; Committee Member: Ajit Yoganathan; Committee Member: Larry McIntire; Committee Member: Marc Levenston; Committee Member: Mark Allen. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Xie, Sibai. "Characterization and Fabrication of Scaffold Materials for Tissue Engineering". University of Akron / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=akron1366303111.
Pełny tekst źródłaGumera, Christiane Bacolor. "New materials and scaffold fabrication method for nerve tissue engineering". Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/28212.
Pełny tekst źródłaCommittee Chair: Wang, Yadong; Committee Member: Bao, Gang; Committee Member: Bellamkonda, Ravi; Committee Member: Boyan, Barbara; Committee Member: Chaikof, Elliot; Committee Member: Meredith, J. Carson.
Cooke, Shelley L. "Effects of Therapeutic Radiation on Polymeric Scaffolds". Thesis, Virginia Tech, 2014. http://hdl.handle.net/10919/54540.
Pełny tekst źródłaMaster of Science
Gualandi, Chiara <1982>. "Porous Polymeric Bioresorbable Scaffolds for Tissue Engineering". Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2010. http://amsdottorato.unibo.it/2507/1/gualandi_chiara_tesi.pdf.
Pełny tekst źródłaGualandi, Chiara <1982>. "Porous Polymeric Bioresorbable Scaffolds for Tissue Engineering". Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2010. http://amsdottorato.unibo.it/2507/.
Pełny tekst źródłaJordan, Alex Michael. "FIBER-COMPOSITE IN SITU FABRICATION: MULTILAYER COEXTRUSION AS AN ENABLING TECHNOLOGY". Case Western Reserve University School of Graduate Studies / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=case1467832877.
Pełny tekst źródłaÖberg, Hed Kim. "Advanced polymeric scaffolds for functional materials in biomedical applications". Doctoral thesis, KTH, Ytbehandlingsteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-139944.
Pełny tekst źródłaQC 20140116
Barry, John J. A. "A supercritical fluid route to cross-linked polymeric scaffolds". Thesis, University of Nottingham, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.407094.
Pełny tekst źródłaDE, TRIZIO ANTONELLA. "DRUG DELIVERY IN 3D POLYMERIC SCAFFOLDS FOR TISSUE REGENERATION". Doctoral thesis, Università degli studi di Pavia, 2017. http://hdl.handle.net/11571/1203316.
Pełny tekst źródłaBrown, Luke. "Microfluidic fabrication of functional polymeric particles". Thesis, University of Sheffield, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.541446.
Pełny tekst źródłaUcar, Seniz. "Polymeric Scaffolds For Bioactive Agent Delivery In Bone Tissue Engineering". Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614905/index.pdf.
Pełny tekst źródłaSilva, Marta Moreno Cary Goulão. "Pourous polymeric scaffolds for tissue engineering : a supercritical fluid approach". Thesis, University of Nottingham, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.431859.
Pełny tekst źródłaCrisan, Daniel Nicolae. "Polymeric scaffolds as building blocks for nanomaterials with biomedical applications". Thesis, University of Birmingham, 2018. http://etheses.bham.ac.uk//id/eprint/8395/.
Pełny tekst źródłaBlevins, Mark. "Development and characterisation of chitosan and polyhydroxybutyrate based polymeric scaffolds". Thesis, University of Birmingham, 2015. http://etheses.bham.ac.uk//id/eprint/5627/.
Pełny tekst źródłaPérez, Olmedilla Marcos. "Tissue engineering techniques to regenerate articular cartilage using polymeric scaffolds". Doctoral thesis, Universitat Politècnica de València, 2015. http://hdl.handle.net/10251/58987.
Pełny tekst źródła[ES] El cartílago articular es un tejido compuesto por condrocitos rodeados por una densa matriz extracelular (MEC). La MEC se compone principalmente de colágeno tipo II y de proteoglicanos. La función principal del cartílago articular es proporcionar una superficie lubricada para las articulaciones. Las lesiones en el cartílago articular son comunes y pueden derivar a osteoartritis. El cartílago articular no tiene vasos sanguíneos, nervios o vasos linfáticos y, por tanto, tiene una capacidad limitada de auto-reparación. La ingeniería tisular (IT) es un área prometedora en la regeneración de cartílago. En la IT se utilizan "andamiajes" (scaffolds) tridimensionales (3D) como soportes para el cultivo celular y tisular. Los scaffolds proporcionan una estructura que facilita la adhesión y la expansión de los condrocitos, manteniendo un fenotipo condrocítico limitando su desdiferenciación; que es el mayor problema en los sistemas bidimensionales (2D). La adhesión celular a los scaffolds depende de las características físicas y químicas de su superficie (morfología, rigidez, contenido de agua en equilibrio, tensión superficial, hidrofilicidad, presencia de cargas eléctricas). El objetivo general de esta tesis fue estudiar la influencia de diferentes tipos de biomateriales en la respuesta de los condrocitos en cultivo in vitro. Los scaffolds deben tener una estructura porosa interconectada para permitir el desarrollo celular a través de toda la estructura 3D, potenciando que los condrocitos mantengan su fenotipo, así como permitiendo entrada de nutrientes y eliminación de desechos metabólicos. Se estudió el efecto de la hidrofilicidad y de la arquitectura de poro. Se cuantificó la viabilidad celular, la proliferación y la expresión de agrecano. Cuando los condrocitos humanos se cultivaron en sustratos poliméricos donde los grupos hidrófilos se distribuyeron de manera homogénea, la adhesión, la proliferación y la viabilidad disminuyó con el contenido de grupos hidrófilo. Sin embargo, los copolímeros en los que los dominios hidrófilos e hidrófobos se alternaban mostraron mejores resultados que los homopolímeros correspondientes. Se sintetizaron series de scaffolds bioestables y series biodegradables con diferente hidrofilicidad y porosidad utilizando plantillas de microesferas sinterizadas. Se obtuvieron arquitecturas de poros regulares y reproducibles. Las células colonizaron el scaffold en su totalidad cuando los poros y la interconexión entre ellos era lo suficientemente grande. Se evaluó la rediferenciación condrogénica de condrocitos autólogos humanos, previamente expandidos en monocapa, sembrados en un scaffold biodegradable de policaprolactona (PCL). Se demostró que los condrocitos cultivados en scaffolds de PCL con medio sin suero bovino fetal (FBS), se rediferenciaban de manera eficiente; expresando un fenotipo condrocítico, caracterizado por su capacidad de sintetizar proteínas de la MEC específicas de cartílago hialino. Se estudió la influencia de la hidrofilicidad y la conectividad de los poros de los scaffolds de caprolactona sobre la adhesión de los condrocitos a las paredes de los poros, su capacidad proliferativa y la composición de MEC sintetizada. Se observó que un mínimo de 70% de porosidad era necesario para permitir la siembra de los condrocitos en el scaffold y su posterior viabilidad. El número de células aumentaba a medida que aumentaba la porosidad del scaffold. Los resultados sugieren que parte de las células que se adherían a las paredes internas de los poros mantenían el fenotipo desdiferenciado de condrocitos cultivados en monocapa, mientras que otros se rediferenciaban. En conclusión, los resultados de esta tesis aportan un avance en el campo de la regeneración de cartílago articular utilizando técnicas de IT. Los estudios realizados proporcionan directrices sobre la composición, la porosidad y la hidrofilicidad más adecuada para l
[CAT] El cartílag articular és un teixit format per condròcits envoltats per una densa matriu extracel·lular (MEC). La MEC es compon principalment de col·lagen tipus II i de proteoglicans. La funció principal del cartílag articular és proporcionar una superfície lubricada a les articulacions. Les lesions en el cartílag articular són comuns i poden derivar en osteoartritis. El cartílag articular no té vasos sanguinis, nervis ni vasos limfàtics i, per tant, té una capacitat limitada d'auto-reparació. L'enginyeria tissular (IT) és una àrea prometedora en la regeneració del cartílag. A la IT s'utilitzen "bastiments" (scaffolds) tridimensionals (3D) com a suports per al cultiu cel·lular i tissular. Els scaffolds proporcionen una estructura que facilita l'adhesió i l'expansió dels condròcits, mantenint un fenotip condrocític limitant la seua desdiferenciació; que és el major problema en els sistemes bidimensionals (2D). L'adhesió cel·lular als scaffolds depèn de les característiques físiques i químiques de la superfície (morfologia, rigidesa, contingut d'aigua en equilibri, tensió superficial, hidrofilicitat i presència de càrregues elèctriques). L'objectiu general d'aquesta tesi va ser estudiar la influència de diferents tipus de biomaterials en la resposta dels condròcits en cultiu in vitro. Els scaffolds han de tindre una estructura porosa interconnectada per a permetre el desenvolupament cel·lular a través de tota l'estructura 3D, potenciant que els condròcits mantinguen el seu fenotip així com permetent l'entrada de nutrients i l'eliminació de productes metabòlics. S'ha estudiat l'efecte de la hidrofilicitat i de l'arquitectura de porus dels scaffolds. Es va quantificar la viabilitat cel·lular, la proliferació i l'expressió de agrecà. Quan els condròcits humans es van cultivar en substrats polimèrics en els quals els grups hidròfils es van distribuir de manera homogènia, l'adhesió, la proliferació i la viabilitat van disminuir amb el contingut de grups hidròfils. No obstant això, els copolímers en els quals els dominis hidròfils i hidròfobs s'alternaven van mostrar millors resultats que els homopolímers corresponents. Es van sintetitzar sèries de scaffolds bioestables i sèries biodegradables amb diferent hidrofilicitat i porositat utilitzant plantilles de microesferes sinteritzades. Es van obtindre arquitectures de porus regulars i reproduïbles. Les cèl·lules van colonitzar el scaffold en la seua totalitat quan els porus i la interconnexió entre ells era suficientment gran. Es van avaluar la rediferenciació condrogènica de condròcits autòlegs humans, prèviament expandits en monocapa, en un scaffold biodegradable de policaprolactona (PCL). Es va demostrar que els condròcits cultivats en scaffolds de PCL sense sèrum boví fetal (FBS) es rediferenciaven de manera eficient, expressant un fenotip condrocític caracteritzat per la seua capacitat de sintetitzar proteïnes de la MEC específiques de cartílag hialí. També es va estudiar la influència de la hidrofilicitat i la connectivitat dels porus dels scaffolds de caprolactona sobre l'adhesió dels condròcits a les parets dels porus, la seua capacitat proliferativa i la composició de MEC sintetitzada. Es va observar que un mínim del 70% de porositat sembla ser necessari per permetre la sembra dels condròcits i la seua posterior viabilitat en el scaffold. El nombre de cèl·lules augmentava a mesura que augmentava la porositat del scaffold. Els resultats suggereixen que part de les cèl·lules que s'adherien a les parets internes dels porus mantenien el fenotip desdiferenciat de condròcits cultivats en monocapa, mentre que altres es rediferenciaven. En conclusió, els resultats d'aquesta tesi proporcionen informació valuosa en el camp de la regeneració de cartílag utilitzant tècniques d'IT. Els estudis realitzats proporcionen directrius sobre la composició, la porositat i la hidrofilicitat m
Pérez Olmedilla, M. (2015). Tissue engineering techniques to regenerate articular cartilage using polymeric scaffolds [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/58987
TESIS
Comeau, Benita M. "Fabrication of tissue engineering scaffolds using stereolithography". Diss., Atlanta, Ga. : Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/26564.
Pełny tekst źródłaCommittee Chair: Henderson, Clilfford; Committee Member: Ludovice, Peter; Committee Member: Meredith, Carson; Committee Member: Prausnitz, Mark; Committee Member: Rosen, David; Committee Member: Wang, Yadong. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Yilgor, Pinar. "Sequential Growth Factor Delivery From Polymeric Scaffolds For Bone Tissue Engineering". Phd thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/3/12611188/index.pdf.
Pełny tekst źródłahowever, the control of the cell organization and cell behavior to create fully functional 3-D constructs has not yet been achieved. To overcome these, activities have been concentrated on the development of multi-functional tissue engineering scaffolds capable of delivering the required bioactive agents to initiate and control cellular activities. The aim of this study was to prepare tissue engineered constructs composed of polymeric scaffolds seeded with mesenchymal stem cells (MSCs) carrying a nanoparticulate growth factor delivery system that would sequentially deliver the growth factors in order to mimic the natural bone healing process. To achieve this, BMP-2 and BMP-7, the osteogenic growth factors, were encapsulated in different polymeric nanocapsules (poly(lactic acid-co-glycolic acid) (PLGA) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)) with different properties (degradation rates, crystallinity) and, therefore, different release rates to achieve the early release of BMP-2 followed by the release of BMP-7, as it is in nature. Initially, these nanoparticulate delivery systems were characterized and then the effect of single, simultaneous and sequential delivery of BMP-2 and BMP-7 from these delivery systems was studied in vitro using rat bone marrow MSCs. The effect of using these two growth factors in a sequential manner by mimicking their natural bioavailability timing was shown with maximized osteogenic activity results. BMP-2 loaded PLGA nanocapsules were subcutaneously implanted into Wistar rats and according to initial results, their biocompatibility as well as the positive effect of BMP-2 release on the formation of osteoclast-like cells was shown. To complete the construction of the bioactive scaffold, this nanoparticulate sequential delivery system was incorporated into two different types of polymeric systems
natural (chitosan) and synthetic (poly(&
#949
-caprolactone) (PCL)). 3-D fibrous scaffolds were produced using these materials by wet spinning and 3-D plotting. Incorporation of nanocapsules into 3-D chitosan scaffolds was studied by two different methods: incorporation within and onto chitosan fibers. Incorporation into 3-D PCL scaffolds was achieved by coating the nanocapsules onto the fibers of the scaffolds in an alginate layer. With both scaffold systems, incorporation of nanocapsule populations capable of delivering BMP-2 and BMP-7 in single, simultaneous and sequential fashion was achieved. As with free nanocapsules, the positive effect of sequential delivery on the osteogenic differentiation of MSCs was shown with both scaffold systems, creating multi-functional scaffolds capable of inducing bone healing.
Powell, Heather Megan. "Nanoscalar modifications to polymeric tissue engineering scaffolds effect on cellular behavior /". The Ohio State University, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=osu1095780106.
Pełny tekst źródłaGoyal, Poorva. "Development of dendritic and polymeric scaffolds for biological and catalysis applications". Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/24826.
Pełny tekst źródłaCommittee Chair: Weck, Marcus; Committee Member: Bunz, Uwe H. F.; Committee Member: Dickson, Robert M; Committee Member: Fahrni, Christoph J; Committee Member: Jones, Christopher W; Committee Member: Murthy, Niren.
Fiorani, Andrea <1985>. "Electrospun Polymeric Scaffolds with Enhanced Biomimetic Properties for Tissue Engineering Applications". Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amsdottorato.unibo.it/6483/1/Fiorani_Andrea_Tesi.pdf.
Pełny tekst źródłaFiorani, Andrea <1985>. "Electrospun Polymeric Scaffolds with Enhanced Biomimetic Properties for Tissue Engineering Applications". Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amsdottorato.unibo.it/6483/.
Pełny tekst źródłaMatsushita, Albert Keisuke. "Fabrication of tissue scaffolds using projection micro-stereolithography". Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/98663.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references (page 33).
In vitro liver models are a critical tool in pharmaceutical research, yet standard hepatocyte cultures fail to capture the complexity of in vivo tissue behavior. One of the most critical features of the in vivo liver is the extensive microvasculature which allows for the delivery of nutrients and metabolites without exposing hepatocytes to de-differentiating fluidic shear stresses. A new liver tissue scaffold design able to capture this histological organization may therefore improve the functional longevity of seeded hepatocytes. The additive manufacturing technique of projection micro-stereolithography (PuSL) proved capable of building non-cytotoxic and highly complex 3D structures with microvasculature on the order of 20 um inner diameter. While extensive biological testing remains to be carried out, the built structures reveal much promise in PuSL as a method of tissue scaffold fabrication in terms of in vivo mimicking architecture.
by Albert Keisuke Matsushita.
S.B.
Yeh, Shaoyang Anthony. "Three-dimensional aligned fibrillar scaffolds : fabrication and characterization". Thesis, University of Oxford, 2015. https://ora.ox.ac.uk/objects/uuid:4e83606f-134f-4cb0-a4a5-78dfc8b33010.
Pełny tekst źródłaBoughton, Elizabeth Anne. "Development of Bioactive Soft Tissue Scaffold Systems". Thesis, University of Sydney, 2011. https://hdl.handle.net/2123/23174.
Pełny tekst źródłaSumanasinghe, Ruwan Deepal. "Functional Bone Tissue Engineering using Human Mesenchymal Stem Cells and Polymeric Scaffolds". NCSU, 2006. http://www.lib.ncsu.edu/theses/available/etd-11092006-132359/.
Pełny tekst źródłaFisher, Paul. "Additives to Control Mechanical Properties and Drug Delivery of Injectable Polymeric Scaffolds". UKnowledge, 2014. http://uknowledge.uky.edu/cbme_etds/25.
Pełny tekst źródłaBezuidenhout, Deon. "Porous polymeric superstructures as in-growth scaffolds for tissue-engineered vascular prostheses". Thesis, Stellenbosch : Stellenbosch University, 2001. http://hdl.handle.net/10019.1/52404.
Pełny tekst źródłaKoman, Stefano <1987>. "3D polymeric materials as scaffolds for bio-hybrid actuation: Synthesis and characterization". Master's Degree Thesis, Università Ca' Foscari Venezia, 2017. http://hdl.handle.net/10579/9600.
Pełny tekst źródłaLiu, Jikun. "Fabrication of Polymeric Microfluidic Devices for Protein Analysis". Diss., CLICK HERE for online access, 2006. http://contentdm.lib.byu.edu/ETD/image/etd1325.pdf.
Pełny tekst źródłaFalah, Toosi Salma. "Superhydrophobic polymeric surfaces : fabrication, wettability, and antibbacterial activity". Thesis, University of British Columbia, 2017. http://hdl.handle.net/2429/62353.
Pełny tekst źródłaApplied Science, Faculty of
Chemical and Biological Engineering, Department of
Graduate
Li, Yajie. "Design, Fabrication and Application of Polymeric Porous Media". Thesis, Paris, ENSAM, 2018. http://www.theses.fr/2018ENAM0009/document.
Pełny tekst źródłaDue to the combination of the advantages of porous media and polymer materials, polymeric porous media possess the properties of controllable porous structure, easily modifiable surface properties, good chemical stability, etc., which make them applicable in a wide range of industrial fields, including adsorption, battery separator, catalyst carrier, filter, energy storage, etc. Although there exist various preparation methods, such as template technique, emulsion method, phase separation method, foaming process, electrospinning, top-down lithographic techniques, breath figure method, etc., the large-scale preparation of polymeric porous media with controllable pore structures and specified functions is still a long-term goal in this field, which is one of the core objectives of this thesis. Therefore, in the first part of the thesis, polymeric porous media are firstly designed based on the specific application requirements. Then the designed polymeric porous media are prepared by the combination of multilayer coextrusion and traditional preparation methods (template technique, phase separation method). This combined preparation method has integrated the advantages of the multilayer coextrusion (continuous process, economic pathway for large-scale fabrication, flexibility of the polymer species, and tunable layer structures) and the template/phase separation method (simple preparation process and tunable pore structure). Afterwards, the applications of the polymeric porous media in polycyclic aromatic hydrocarbons adsorption and lithium-ion battery separator have been investigated.More importantly, in the second part of the thesis, numerical simulations of particle transport and deposition in porous media are carried out to explore the mechanisms that form the theoretical basis for the above applications (adsorption, separation, etc.). Transport and deposition of colloidal particles in porous media are of vital important in other applications such as aquifer remediation, fouling of surfaces, and therapeutic drug delivery. Therefore, it is quite worthy to have a thorough understanding of these processes as well as the dominant mechanisms involved. In this part, the microscale simulations of colloidal particle transport and deposition in porous media are achieved by a novel colloidal particle tracking model, called 3D-PTPO (Three-Dimensional Particle Tracking model by Python® and OpenFOAM®) code. The particles are considered as a mass point during transport in the flow and their volume is reconstructed when they are deposited. The main feature of the code is to take into account the modification of the pore structure and thus the flow streamlines due to deposit. Numerical simulations were firstly carried out in a capillary tube considered as an element of an idealized porous medium composed of capillaries of circular cross sections to revisit the work of Lopez and co-authors by considering a more realistic 3D geometry and also to get the most relevant quantities by capturing the physics underlying the process. Then microscale simulation is approached by representing the elementary pore structure as a capillary tube with converging/diverging geometries (tapered pipe and venturi tube) to explore the influence of the pore geometry and the particle Péclet number (Pe) on particle deposition. Finally, the coupled effects of surface chemical heterogeneity and hydrodynamics on particle deposition in porous media were investigated in a three-dimensional capillary with periodically repeating chemically heterogeneous surfaces
Darling, Andrew Leete. "Functional design and fabrication of heterogeneous tissue engineering scaffolds /". Philadelphia, Pa. : Drexel University, 2005. http://dspace.library.drexel.edu/handle/1860/662.
Pełny tekst źródłaSalifu, Ali A. "Fabrication and characterisation of scaffolds for bone tissue engineering". Thesis, University of Surrey, 2015. http://epubs.surrey.ac.uk/808024/.
Pełny tekst źródłaLeonard, S. "Negative polymeric resists for electron beam lithography". Thesis, University of Liverpool, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.234905.
Pełny tekst źródłaTrahan, William R. "Peracetic Acid: A Practical Agent for Sterilizing Heat-Labile Polymeric Tissue-engineering Scaffolds". VCU Scholars Compass, 2015. http://scholarscompass.vcu.edu/etd/3728.
Pełny tekst źródłaMozafari, M., Farshid Sefat i A. Atala. "Handbook of Tissue Engineering Scaffolds: Volume two". Elsevier, 2019. http://hdl.handle.net/10454/18386.
Pełny tekst źródłaThis title provides a comprehensive and authoritative review on recent advancements in the application and use of composite scaffolds in tissue engineering. Chapters focus on specific tissue/organ (mostly on the structure and anatomy), the materials used for treatment, natural composite scaffolds, synthetic composite scaffolds, fabrication techniques, innovative materials and approaches for scaffolds preparation, host response to the scaffolds, challenges and future perspectives, and more. Bringing all the information together in one major reference, the authors systematically review and summarise recent research findings, thus providing an in-depth understanding of scaffold use in different body systems.
Haraldsson, Klas Tommy. "Fabrication of polymeric microfluidic devices via photocurable liquid monomers". Doctoral thesis, Stockholm : Fibre and Polymer Technology, Department of Chemical Engineering and Technology, Royal Institute of Technology (KTH), 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-466.
Pełny tekst źródłaMishra, Kunal R. "Extraction of hemicellulose and fabrication of biodegradable polymeric blends". online access from Digital Dissertation Consortium, 2007. http://libweb.cityu.edu.hk/cgi-bin/er/db/ddcdiss.pl?1458531.
Pełny tekst źródłaWilliams, Tasha R. "FABRICATION AND CHARACTERIZATION OF ELECTROSPUN TECOPHILIC SCAFFOLDS FOR GENE DELIVERY". University of Akron / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=akron1193882087.
Pełny tekst źródłaBrickman, Raredon Micha Sam. "Design and fabrication of physiologic tissue scaffolds using projection-micro-stereolithography". Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/90086.
Pełny tekst źródła35
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 65-67).
Recent advances in material processing are presenting groundbreaking opportunities for biomedical engineers. Projection-micro-stereolithography, or PuSL, is an additive manufacturing technique in which complex parts are built out of UV-curable resins using ultraviolet light. The primary strength of PuSL is its capacity to translate CAD files into three-dimensional parts with unusually small feature sizes (~0.5 microns). It is an ideal candidate, therefore, for making tissue scaffolds with sophisticated microscopic architecture. Nearly all multicellular biological tissues display a hierarchy of scale. In human tissues, this means that the mechanics and function of an organ are defined by structural organization on multiple levels. Macroscopically, a branching blood supply creates a patent network for nutrient delivery and gas exchange. Microscopically, these vessels spread into capillary beds shaped in an organ-specific orientation and organization, helping to define the functional unit of a given tissue. On a nano-scale, the walls of these capillaries have a tissue-specific structure that selectively mediates the diffusion of nutrients and proteins. To craft a histologically accurate tissue, each of these length scales must be considered and mimicked in a space-filling fashion. In this project, I sought to generate a cellular, degradable tissue scaffolds that mimicked native extracellular matrix across length scales. The research described here lays the groundwork for the generation of degradable, vascularized cell scaffolds that might be used to build architecturally complex multi-cellular tissues suitable for both pharmacological modeling and regenerative medicine.
by Micha Sam Brickman Raredon.
S.M.
Tu, Xiaolong. "Fabrication et étude de scaffolds multidimensionnels pour l'ingénierie cellulaire et tissulaire". Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLEE045/document.
Pełny tekst źródłaThe objective of this work is to develop a method of engineering multi-dimensional scaffolds for cell culture and tissue formation. We firstly applied a 3D printing technique to produce the designed frame in PEGDA and then filled the free-space of the frame with a gelatin gel. After freezing and drying, a hybrid 3D scaffold made of gelatin porous structures and PEDGA backbone was obtained, which supported culture and differentiation of neural progenitor cells. To more easily integrate into a microfluidic device, we also designed a 2D scaffold in form of a thin layer of honeycomb frame of PEGDA and self-assembled porous structure of PCL. Such a patch form scaffold could be used for cell culture and gene transfection, showing advantages over the conventional methods in terms of nutrients and soluble factors uptake. Finally, we fabricated a soft patch made of an elastic frame in PDMS and a monolayer of gelatin nanofibers to facilitate cardiac differentiation from human induced pluripotent stem cells. As expected, we achieved a cardiac generation with higher contraction strength and a higher beating homogeneity comparing to the conventional approaches. All together, we demonstrated the utility of hybrid scaffolds for micro-tissue engineering which could impact the future studies in the fields of tissue engineering, drug screening and regenerative medicine
Barros, Manuel João Salazar Guedes de. "Fabrication of hydrogel-bioactive glass composite scaffolds for bone tissue engineering". Master's thesis, Universidade de Aveiro, 2016. http://hdl.handle.net/10773/17461.
Pełny tekst źródłaBone is an extremely important connective tissue in the human body, as it provides support and protection of internal organs, being also metabolically relevant as the main mineral reservoir and assuring haematopoiesis through the bone marrow. Due to the current ageing of the population, an increase in bone tissue related diseases is noticeable. Thus, more efficient therapies for treating bone diseases is crucial. Tissue Engineering appears as a promising technology for treating several of those problems, such as bone loss and joint problems. In the present work, composite biomaterials composed of a polymeric hydrogel matrix reinforced with bioactive glass particles were prepared. Individually, these materials have a high water content, which enhances their diffusive transport properties, and display osteogenic properties, respectively. The selected polymer was RGD functionalized pectin, due to its interesting properties, such as biocompatibility, cell-adhesive characteristics and adequacy for cell entrapment, and the bioactive glass selected was a novel alkali-free formulation of 70% diopside and 30% tricalcium phosphate (Di-70), composed of SiO2, CaO, MgO and P2O5. Several different composite formulations were tested, in which pectin concentration, bioactive glass content and glass particle size were varied. The biocomposite’s viscoelastic properties were assessed, as well as their biological behaviour through cytotoxicity assays, and osteogenic character by incubating mesenchymal stem cell (MSC)-laden composites into both basal and osteogenic media for up to 21 days. The results obtained demonstrated that a composite biomaterial with tuneable mechanical properties was successfully prepared, with in situ crosslinking ability within therapeutically relevant timeframes, and not requiring additional crosslinking strategies besides its own composition. Furthermore, its intrinsic osteogenic properties due to the glass composition provided the adequate conditions for promoting the differentiation of MSCs without osteogenic stimulation. The combined properties achieved indicate that the biocomposites prepared are suitable candidate cellularized biomaterials for bone tissue engineering applications.
O osso é um tecido conjuntivo de extrema importância no organismo humano, tendo funções como suporte ou proteção de órgãos internos, sendo também metabolicamente relevante como o principal reservatório de minerais e assegurando a hematopoiese com a medula óssea. Dado o envelhecimento da população, tem-se verificado um aumento da incidência de doenças degenerativas deste tecido, sendo assim essencial aplicar terapias altamente eficientes para o tratamento dessas patologias. A Engenharia de Tecidos surge como uma tecnologia promissora no tratamento destes problemas, como a perda de massa óssea e problemas nas articulações. Neste trabalho, foram produzidos biomateriais compósitos, baseados numa matriz polimérica sob a forma de hidrogel reforçada com partículas de vidro bioativo. Individualmente, estes materiais apresentam um elevado teor em água favorável ao transporte de nutrientes, e propriedades osteogénicas, respetivamente. O polímero selecionado foi a pectina funcionalizada com RGD, dadas as suas propriedades interessantes como a biocompatibilidade, capacidade de promover a adesão celular e adequabilidade para o encapsulamento de células, e o vidro bioativo apresenta uma composição de 70% de diópsido e 30% de fosfato tricálcico (Di-70) isento de alcalinos e sendo composto por SiO2, CaO, MgO e P2O5. Diferentes formulações de hidrogéis compósitos foram testadas, em que se variou a concentração de polímero, a concentração de biovidro e o seu tamanho de partícula. Analisaram-se as propriedades viscoelásticas dos biocompósitos, bem como o seu comportamento biológico, com ensaios de citotoxicidade, e ainda as propriedades osteogénicas do material, pela incubação de hidrogéis contendo células estaminais mesenquimais (MSCs) em meio basal e osteogénico durante 21 dias. Os resultados deste trabalho indicam que foi possível preparar um biomaterial compósito de propriedades mecânicas ajustáveis, com capacidade de reticular in situ em tempos clinicamente desejáveis sem necessitar agentes reticulantes externos. Para além disso, as propriedades osteogénicas intrínsecas do biovidro forneceram as condições adequadas para a promoção da diferenciação de MSCs sem estimulação osteogénica adicional. As propriedades combinadas alcançadas indicam que os biocompósitos preparados têm potencial para ser aplicados em engenharia de tecido ósseo.