Gotowa bibliografia na temat „Fabrication of polymeric scaffolds”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Fabrication of polymeric scaffolds”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Fabrication of polymeric scaffolds"
Abdelaziz, Ahmed G., Hassan Nageh, Sara M. Abdo, Mohga S. Abdalla, Asmaa A. Amer, Abdalla Abdal-hay i Ahmed Barhoum. "A Review of 3D Polymeric Scaffolds for Bone Tissue Engineering: Principles, Fabrication Techniques, Immunomodulatory Roles, and Challenges". Bioengineering 10, nr 2 (3.02.2023): 204. http://dx.doi.org/10.3390/bioengineering10020204.
Pełny tekst źródłaKotrotsos, Athanasios, Prokopis Yiallouros i Vassilis Kostopoulos. "Fabrication and Characterization of Polylactic Acid Electrospun Scaffolds Modified with Multi-Walled Carbon Nanotubes and Hydroxyapatite Nanoparticles". Biomimetics 5, nr 3 (2.09.2020): 43. http://dx.doi.org/10.3390/biomimetics5030043.
Pełny tekst źródłaDhandayuthapani, Brahatheeswaran, Yasuhiko Yoshida, Toru Maekawa i D. Sakthi Kumar. "Polymeric Scaffolds in Tissue Engineering Application: A Review". International Journal of Polymer Science 2011 (2011): 1–19. http://dx.doi.org/10.1155/2011/290602.
Pełny tekst źródłaTan, K. H., C. K. Chua, K. F. Leong, M. W. Naing i C. M. Cheah. "Fabrication and characterization of three-dimensional poly(ether-ether-ketone)/-hydroxyapatite biocomposite scaffolds using laser sintering". Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 219, nr 3 (1.03.2005): 183–94. http://dx.doi.org/10.1243/095441105x9345.
Pełny tekst źródłaWang, Pei-Jiang, Nicola Ferralis, Claire Conway, Jeffrey C. Grossman i Elazer R. Edelman. "Strain-induced accelerated asymmetric spatial degradation of polymeric vascular scaffolds". Proceedings of the National Academy of Sciences 115, nr 11 (26.02.2018): 2640–45. http://dx.doi.org/10.1073/pnas.1716420115.
Pełny tekst źródłaIto, Masashi, i Masami Okamoto. "Structure and properties of 3D resorbable scaffolds based on poly(L-lactide) via salt-leaching combined with phase separation". International Journal of Hydrology 7, nr 2 (10.05.2023): 73–76. http://dx.doi.org/10.15406/ijh.2023.07.00341.
Pełny tekst źródłaBikuna-Izagirre, Maria, Javier Aldazabal i Jacobo Paredes. "Gelatin Blends Enhance Performance of Electrospun Polymeric Scaffolds in Comparison to Coating Protocols". Polymers 14, nr 7 (24.03.2022): 1311. http://dx.doi.org/10.3390/polym14071311.
Pełny tekst źródłaScaffaro, Roberto, Francesco Lopresti, Andrea Maio, Fiorenza Sutera i Luigi Botta. "Development of Polymeric Functionally Graded Scaffolds: A Brief Review". Journal of Applied Biomaterials & Functional Materials 15, nr 2 (16.12.2016): 107–21. http://dx.doi.org/10.5301/jabfm.5000332.
Pełny tekst źródłaRatheesh, Greeshma, Jayarama Reddy Venugopal, Amutha Chinappan, Hariharan Ezhilarasu, Asif Sadiq i Seeram Ramakrishna. "3D Fabrication of Polymeric Scaffolds for Regenerative Therapy". ACS Biomaterials Science & Engineering 3, nr 7 (5.01.2017): 1175–94. http://dx.doi.org/10.1021/acsbiomaterials.6b00370.
Pełny tekst źródłaLi, Jia Shen, Yi Li, Lin Li, Arthur F. T. Mak, Frank Ko i Ling Qin. "Fabrication of Poly(L-Latic Acid) Scaffolds with Wool Keratin for Osteoblast Cultivation". Advanced Materials Research 47-50 (czerwiec 2008): 845–48. http://dx.doi.org/10.4028/www.scientific.net/amr.47-50.845.
Pełny tekst źródłaRozprawy doktorskie na temat "Fabrication of polymeric scaffolds"
Akbarzadeh, Rosa. "Developing Hierarchical Polymeric Scaffolds for Bone Tissue Engineering". Miami University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=miami1376962498.
Pełny tekst źródłaMinton, Joshua A. "Design, Fabrication, and Analysis of Polymer Scaffolds for Use in Bonce Tissue Engineering". Miami University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=miami1377002320.
Pełny tekst źródłaLi, Shan. "AMINO ACID-BASED POLYMERIC SCAFFOLD FABRICATION AND MODIFICATION FOR BONE REGENERATION APPLICATIONS". University of Akron / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=akron1524792119666267.
Pełny tekst źródłaSultana, Naznin. "Fabrication of PHBV and PHBV-based composite tissue engineering scaffolds through the emulsion freezing/freeze-drying process andevaluation of the scaffolds". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B43703665.
Pełny tekst źródłaSultana, Naznin. "Fabrication of PHBV and PHBV-based composite tissue engineering scaffolds through the emulsion freezing/freeze-drying process and evaluation of the scaffolds". Click to view the E-thesis via HKUTO, 2009. http://sunzi.lib.hku.hk/hkuto/record/B43703665.
Pełny tekst źródłaTollon, Michael H. "Fabrication of coated biodegradable polymer scaffolds and their effects on murine embryonic stem cells". [Gainesville, Fla.] : University of Florida, 2005. http://purl.fcla.edu/fcla/etd/UFE0010286.
Pełny tekst źródłaMohamad, Yunos Darmawati. "Fabrication and characterisation of 3-D porous bioactive glass-ceramic/polymer composite scaffolds for tissue engineering". Thesis, Imperial College London, 2010. http://hdl.handle.net/10044/1/6034.
Pełny tekst źródłaCaves, Jeffrey Morris. "Architecturally defined scaffolds from synthetic collagen and elastin analogues for the fabrication of bioengineered tissues". Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/31731.
Pełny tekst źródłaCommittee Chair: Elliot L. Chaikof; Committee Member: Ajit Yoganathan; Committee Member: Larry McIntire; Committee Member: Marc Levenston; Committee Member: Mark Allen. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Xie, Sibai. "Characterization and Fabrication of Scaffold Materials for Tissue Engineering". University of Akron / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=akron1366303111.
Pełny tekst źródłaGumera, Christiane Bacolor. "New materials and scaffold fabrication method for nerve tissue engineering". Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/28212.
Pełny tekst źródłaCommittee Chair: Wang, Yadong; Committee Member: Bao, Gang; Committee Member: Bellamkonda, Ravi; Committee Member: Boyan, Barbara; Committee Member: Chaikof, Elliot; Committee Member: Meredith, J. Carson.
Książki na temat "Fabrication of polymeric scaffolds"
Gualandi, Chiara. Porous Polymeric Bioresorbable Scaffolds for Tissue Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19272-2.
Pełny tekst źródłaGualandi, Chiara. Porous Polymeric Bioresorbable Scaffolds for Tissue Engineering. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.
Znajdź pełny tekst źródłaGilson, Khang, Kim Moon Suk i Lee Hai Bang, red. A manual for biomaterials: Scaffold fabrication technology. Singapore: World Scientific, 2007.
Znajdź pełny tekst źródłaLengsfeld, Hauke. Composite technology: Prepregs and monolithic part fabrication technologies. Munich: Hanser Publications, 2015.
Znajdź pełny tekst źródłaRiaz, Ufana. Nanostructured conducting polymers and their nanocomposites: Classification, properties, fabrication, and applications. Hauppauge, N.Y: Nova Science Publishers, 2009.
Znajdź pełny tekst źródłaRiaz, Ufana. Nanostructured conducting polymers and their nanocomposites: Classification, properties, fabrication, and applications. Hauppauge, N.Y: Nova Science Publishers, 2009.
Znajdź pełny tekst źródłaCenter, Langley Research, red. Processing and properties of fiber reinforced polymeric matrix composites: I.IM7/LARC(TM)-PETI-7 polyimide composites. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1995.
Znajdź pełny tekst źródłaChattopadhyay, Dipankar, i Beauty Das. Design, Characterization and Fabrication of Polymer Scaffolds for Tissue Engineering. Elsevier Science & Technology, 2023.
Znajdź pełny tekst źródłaHall, Christopher. Materials: A Very Short Introduction. Oxford University Press, 2014. http://dx.doi.org/10.1093/actrade/9780199672677.001.0001.
Pełny tekst źródłaGualandi, Chiara. Porous Polymeric Bioresorbable Scaffolds for Tissue Engineering. Springer, 2013.
Znajdź pełny tekst źródłaCzęści książek na temat "Fabrication of polymeric scaffolds"
Sultana, Naznin. "Fabrication Techniques and Properties of Scaffolds". W Biodegradable Polymer-Based Scaffolds for Bone Tissue Engineering, 19–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34802-0_2.
Pełny tekst źródłaSultana, Naznin, Mohd Izzat Hassan i Mim Mim Lim. "Fabrication of Polymer and Composite Scaffolds Using Electrospinning Techniques". W Composite Synthetic Scaffolds for Tissue Engineering and Regenerative Medicine, 25–43. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09755-8_3.
Pełny tekst źródłaSultana, Naznin, Mohd Izzat Hassan i Mim Mim Lim. "Fabrication and Characterization of Polymer and Composite Scaffolds Using Freeze-Drying Technique". W Composite Synthetic Scaffolds for Tissue Engineering and Regenerative Medicine, 45–60. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09755-8_4.
Pełny tekst źródłaFarkhondehnia, Houra, Mohammad Amani Tehran i Fatemeh Zamani. "Fabrication of Biocompatible PLGA/PCL/PANI Nanofibrous Scaffolds with Electrical Excitability". W Eco-friendly and Smart Polymer Systems, 39–42. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45085-4_10.
Pełny tekst źródłaSopyan, I., M. Mardziah i Z. Ahmad. "Fabrication of Porous Ceramic Scaffolds via Polymeric Sponge Method Using Sol-Gel Derived Strontium Doped Hydroxyapatite Powder". W IFMBE Proceedings, 827–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21729-6_202.
Pełny tekst źródłaShpichka, Anastasia, Anastasia Koroleva, Daria Kuznetsova, Ruslan I. Dmitriev i Peter Timashev. "Fabrication and Handling of 3D Scaffolds Based on Polymers and Decellularized Tissues". W Advances in Experimental Medicine and Biology, 71–81. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67358-5_5.
Pełny tekst źródłaKhosravi, Fatemeh, Saied Nouri Khorasani, Hamid Zilouei i Rasoul Esmaeely Neisiany. "Fabrication and Characterization of PCl/Gelatin/Forsterite Nanofibrous Scaffolds Used for Modification of the Implants". W Eco-friendly and Smart Polymer Systems, 79–82. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45085-4_20.
Pełny tekst źródłaSahmani, Saeid, i Amirsalar Khandan. "Design of Bio-Nanocomposite Scaffolds with Enhanced Properties for Bone Implantation: Fabrication, Characterization, and Simulation". W Handbook of Polymer and Ceramic Nanotechnology, 1–13. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-10614-0_22-1.
Pełny tekst źródłaSahmani, Saeid, i Amirsalar Khandan. "Design of Bio-nanocomposite Scaffolds with Enhanced Properties for Bone Implantation: Fabrication, Characterization, and Simulation". W Handbook of Polymer and Ceramic Nanotechnology, 709–21. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-40513-7_22.
Pełny tekst źródłaSultana, Naznin, i Min Wang. "Fabrication and Characterisation of Polymer and Composite Scaffolds Based on Polyhydroxybutyrate and Polyhydroxybutyrate-Co-Hydroxyvalerate". W Advances in Composite Materials and Structures, 1229–32. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-427-8.1229.
Pełny tekst źródłaStreszczenia konferencji na temat "Fabrication of polymeric scaffolds"
Rebaioli, Lara, Claudia Pagano i Irene Fassi. "Fabrication of PLA/CNT Composite Scaffolds by Fused Deposition Modeling". W ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/detc2018-86097.
Pełny tekst źródłaJabbari, Esmaiel, David N. Rocheleau, Weijie Xu i Xuezhong He. "Fabrication of Biomimetic Scaffolds With Well-Defined Pore Geometry by Fused Deposition Modeling". W ASME 2007 International Manufacturing Science and Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/msec2007-31011.
Pełny tekst źródłaKramschuster, Adam, Lih-Sheng Turng, Wan-Ju Li, Yiyan Peng i Jun Peng. "The Effect of Nano Hydroxyapatite Particles on Morphology and Mechanical Properties of Microcellular Injection Molded Polylactide/Hydroxyapatite Tissue Scaffold". W ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology. ASMEDC, 2010. http://dx.doi.org/10.1115/nemb2010-13290.
Pełny tekst źródłaWang, Hai, i Wei Li. "Selective HIFU Foaming to Fabricate Porous Polymer for Tissue Engineering Scaffolds". W ASME 2006 International Manufacturing Science and Engineering Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/msec2006-21043.
Pełny tekst źródłaHamid, Qudus, Wei Sun i Selc¸uk Gu¨c¸eri. "Precision Extrusion Deposition With Integrated Assisting Cooling to Fabricate 3D Scaffolds". W ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2010. http://dx.doi.org/10.1115/smasis2010-3804.
Pełny tekst źródłaNain, Amrinder S., Eric Miller, Metin Sitti, Phil Campbell i Cristina Amon. "Fabrication of Single and Multi-Layer Fibrous Biomaterial Scaffolds for Tissue Engineering". W ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-67964.
Pełny tekst źródłaQuigley, Connor, i Md Ahasan Habib. "3D Co-Printability of PCL and Hybrid Hydrogels". W ASME 2022 17th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/msec2022-85685.
Pełny tekst źródłaTourlomousis, Filippos, Houzhu Ding, Antonio Dole i Robert C. Chang. "Towards Resolution Enhancement and Process Repeatability With a Melt Electrospinning Writing Process: Design and Protocol Considerations". W ASME 2016 11th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/msec2016-8774.
Pełny tekst źródłaKennedy, James P., i Robert W. Hitchcock. "Mechanically Enhanced Precipitation of Phase-Inversion Sprayed Polyurethane Scaffold May Be Used to Match Tissue Specific Anisotropy". W ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206632.
Pełny tekst źródłaArora, Jassimran Kaur, i Pooja Bhati. "Fabrication and characterization of 3D printed PLA scaffolds". W PROCEEDINGS OF THE 35TH INTERNATIONAL CONFERENCE OF THE POLYMER PROCESSING SOCIETY (PPS-35). AIP Publishing, 2020. http://dx.doi.org/10.1063/1.5142980.
Pełny tekst źródłaRaporty organizacyjne na temat "Fabrication of polymeric scaffolds"
Chambers. PR-348-09602-R01 Determine New Design and Construction Techniques for Transportation of Ethanol. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), marzec 2013. http://dx.doi.org/10.55274/r0010546.
Pełny tekst źródła