Gotowa bibliografia na temat „Extracellular matrix”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Extracellular matrix”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Extracellular matrix"

1

TANZER, M. L. "Extracellular Matrix: Extracellular Matrix Biochemty." Science 227, nr 4684 (18.01.1985): 289–90. http://dx.doi.org/10.1126/science.227.4684.289-a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

B, Saberi. "Glioma and Extracellular Matrix, A Review on the Integrins as the Receptors of the Extracellular Matrix". Bioequivalence & Bioavailability International Journal 7, nr 1 (4.01.2023): 1–2. http://dx.doi.org/10.23880/beba-16000190.

Pełny tekst źródła
Streszczenie:
The brain extracellular matrix is a complex structure. The invading tumors like gliomas would interact with the extracellular matrix. There are receptors in the extracellular matrix including Integrins. This brief review tries to point to some important notes about the extracellular matrix and Integrins as a group of receptors in the extracellular matrix which can play the important role in the pathogenesis of gliomas in the brain tissue
Style APA, Harvard, Vancouver, ISO itp.
3

Labat-Robert, J., M. Bihari-Varga i L. Robert. "Extracellular matrix". FEBS Letters 268, nr 2 (1.08.1990): 386–93. http://dx.doi.org/10.1016/0014-5793(90)81291-u.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Bernfield, M. "Extracellular matrix". Current Opinion in Cell Biology 1, nr 5 (październik 1989): 953–55. http://dx.doi.org/10.1016/0955-0674(89)90064-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

McDonald, John A. "Extracellular Matrix Assembly". Annual Review of Cell Biology 4, nr 1 (listopad 1988): 183–207. http://dx.doi.org/10.1146/annurev.cb.04.110188.001151.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Fessler, J. H., i L. I. Fessler. "Drosophila Extracellular Matrix". Annual Review of Cell Biology 5, nr 1 (listopad 1989): 309–39. http://dx.doi.org/10.1146/annurev.cb.05.110189.001521.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Ruoslahti, Erkki. "Brain extracellular matrix". Glycobiology 6, nr 5 (1996): 489–92. http://dx.doi.org/10.1093/glycob/6.5.489.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Rienks, Marieke, Anna-Pia Papageorgiou, Nikolaos G. Frangogiannis i Stephane Heymans. "Myocardial Extracellular Matrix". Circulation Research 114, nr 5 (28.02.2014): 872–88. http://dx.doi.org/10.1161/circresaha.114.302533.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Mueller, Andrea R., Klaus-Peter Platz, Cordula Heckert, Michaela H??usler, Olaf Guckelberger, Detlef Schuppan, Hartmut Lobeck i Peter Neuhaus. "THE EXTRACELLULAR MATRIX". Transplantation 65, nr 6 (marzec 1998): 770–76. http://dx.doi.org/10.1097/00007890-199803270-00002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Aplin, J. D., L. J. Foden i A. K. Charlton. "Decidual extracellular matrix". Placenta 7, nr 5 (wrzesień 1986): 458. http://dx.doi.org/10.1016/s0143-4004(86)80062-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Extracellular matrix"

1

Šišková, Zuzana. "Extracellular matrix and (re)myelination". [S.l. : [Groningen : s.n.] ; University Library Groningen] [Host], 2006. http://irs.ub.rug.nl/ppn/297675567.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Vincent-Héroux, Jonathan. "Extracellular matrix receptors in astrogliosis". Thesis, McGill University, 2009. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=32608.

Pełny tekst źródła
Streszczenie:
Dystroglycan and the integrins are two types of extracellular matrix receptors involved in astrocyte adhesion and migration. The molecular mechanisms that control their distribution to signaling platforms of the plasma membrane remain poorly understood. In the present study, we define four cell spreading stages for adherent astrocytes, termed stage 1 to 4, and defined by the state of spreading of the cell in culture. Immunocytochemistry analysis reveals that DG and integrins distribute differentially depending on the stage, and both receptors get recruited to leading edge of the cell, possibly to GM1-rich lipid rafts, in scratch-induced migration. Treatment of reactive astrocytes with cytochalasin-D or colchicine confirms that the formation of MT-rich protrusions is not actin-independent. However, cortical actin localization is independent of the polarized MT network. We confirm scratch-induced Cdc42/Rac1 activation early after wounding and further investigated the role of DG in Rho GTPases signaling. We conclude that ECM receptors localization is tightly regulated along with the cytoskeletal reorganization machinery in astrocyte proliferation.
Dystroglycan et les intégrines sont deux types de récepteurs de la matrice extracellulaire (RMEC) impliqués dans l'adhésion et la migration des astrocytes. Les mécanismes moléculaires qui contrôlent leur distribution aux plates-formes de signalisation de la membrane plasmique demeurent peu étudiés. Dans la présente étude, nous définissons quatre stages d'adhésion cellulaire pour les astrocytes dans lesquels DG et les intégrines sont distribués différemment. Dans la cellule en migration, les deux récepteurs sont recrutés à l'avant, possiblement dans des îlots riches en GM1. En combinant la microscopie à fluorescence et l'usage de perturbateurs du cytosquelette dans notre modèle de lésion in vitro, nous démontrons aussi que la formation des protrusions riches en microtubules n'est pas actine-indépendante. Cependant, la formation d'actine corticale est indépendante du réseau polarisé de microtubules. Nous confirmons l'activation rapide de Cdc42 et Rac1 suite à une lésion in vitro et avons développé une lignée d'astrocytes DG-nulles pour étudier le rôle de DG dans l'activation des Rho GTPases. Nous concluons que la distribution des RMEC est étroitement régulée avec l'appareil de réorganisation cytoskelettique dans la prolifération astrocytaire.
Style APA, Harvard, Vancouver, ISO itp.
3

Yi, Ming. "Extracellular matrix proteins and angiogenesis /". Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2003. http://wwwlib.umi.com/cr/ucsd/fullcit?p3091204.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Lee, Myeongwoo Cheung H. Tak. "Characterization of Caenorhabditis elegans extracellular matrix". Normal, Ill. Illinois State University, 1997. http://wwwlib.umi.com/cr/ilstu/fullcit?p9803726.

Pełny tekst źródła
Streszczenie:
Thesis (Ph. D.)--Illinois State University, 1997.
Title from title page screen, viewed June 5, 2006. Dissertation Committee: H. Tak Cheung (chair), Sean Arkins, Herman E. Brockman, Paul A. Garris, Brian J. Wilkinson. Includes bibliographical references (leaves 113-121) and abstract. Also available in print.
Style APA, Harvard, Vancouver, ISO itp.
5

McCann, Maureen C. "Architecture of the plant extracellular matrix". Thesis, University of East Anglia, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.279709.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Han, Lin Ph D. Massachusetts Institute of Technology. "Nanomechanics of cartilage extracellular matrix macromolecules". Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/42134.

Pełny tekst źródła
Streszczenie:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2007.
Includes bibliographical references (p. 187-201).
In this thesis, the shear and self-adhesion nanomechanical properties between opposing cartilage aggrecan macromolecules were probed. In addition, nanoscale dynamic oscillatory mechanical properties of cartilage and its type II collagen network was measured. Aggrecan shear nanomechanics was assessed via microcontact printing and lateral force microscopy. Lateral force between aggrecan and the probe tip, and compression of aggrecan was simultaneously measured in 0.001 - 1.0 M NaCl aqueous solutions. Using the microsized tip (Rtip ~ 2.5 [mu]m) enabled a large assembly of ~ 103 aggrecan molecules to interact simultaneously, closely mimicking the in vivo conditions.Both electrostatic and nonelectrostatic components were identified to importantly contribute to aggrecan shear. At near physiological IS (0.1 M), significant rate dependence was observed, suggestive of visco/poroelastic interactions within the aggrecan layer. By using an aggrecan end-functionalized colloidal tip, shear of two opposing aggrecan layers was assessed in a similar fashion. Lower lateral force and a more marked rate dependence were measured compared to the shear of a single layer, due to the aggrecan inter-layer molecular interpenetration and the different local z-dependent charge density distribution. The addition of Ca2+, at physiological-like 2 mM concentration, significantly affects cartilage shear by its electrostatic screening and binding effects. Marked aggrecan self-adhesion upon separation was discovered after static compression in the presence of electrostatic repulsion in physiological-like conditions.
(cont.) Aggrecan self-adhesion increases as increasing equilibration time and bath IS. Molecular origins of the adhesion, also present in vivo, include van der Waals, hydrogen bonding, Ca2+-mediated bridging, and molecular entanglements between the glycosaminogly-can branches of aggrecan. This self-adhesion could be an important factor in protecting cartilage matrix structural integrity and function via these energy-dissipative mechanisms. The nanoscale oscillatory dynamic deformation properties of both nontreated and proteoglycan(PG)-depleted (left mostly type II collagen) calf knee cartilage disks (- 0.5 mm thick) was measured by connecting an external electronic wave generator to the AFM. A significant increase in effective stiffness E and phase lag A (deformation with respect to force) as increasing frequency for both disks suggests poro/viscoelasticity are more critical at higher frequency. The PG-depleted disk shows a more marked dependence of E and A on deformation amplitude - 2 - 100 nm, as the nanostructure and nanomechanical properties of porous collagen network are more heterogeneous without the entrapment of aggrecan motif. A unique - 23 nm banding pattern along the type II collagen fibrils was observed, which may be relative to the cartilage swelling properties and the molecular interaction between aggrecan and the collagen network. Taken together, this study provides insights into molecular-level deformation of cartilage extracellular matrix (ECM) macromolecules (e.g., aggrecan, type II collagen) that are important to the understanding of cartilage biomechanical function. Ongoing studies are probing the age, disease (osteoarthritis), source and species related variations of cartilage ECM properties at the molecular level.
by Lin Han.
Ph.D.
Style APA, Harvard, Vancouver, ISO itp.
7

Baig, Shabnam Mobeen. "The extracellular matrix in Alzheimer's disease". Thesis, University of Bristol, 2006. http://hdl.handle.net/1983/f7eb48ef-9368-4f28-ab12-738fb9e517b5.

Pełny tekst źródła
Streszczenie:
The perineuronal net (PN) is a specialised region of extracellular matrix around some neurons, particularly GABAergic neurons that contain the calcium binding protein, parvalbumin (PV). The negatively charged glycosaminoglycan side chains of chondroitin sulphate proteoglycans, a major constituent of the PN, create a polyanionic environment around neurons that is thought to be important in the buffering of ions. Maintaining ion homeostasis around the inhibitory PV-positive neurons is critical in order to sustain their fast-firing rates. Loss or disruption of inhibitory input, particularly to glutamatergic cells could result in excitotoxicity and cell death. The PN is also important in the development, stabilisation and remodelling of synapses, in maintaining the trophic microenvironment around neurons and in synaptic plasticity. Neurodegeneration, the considerable loss of synapses and the inflammatory reaction that occurs in Alzheimer's disease (AD) is likely to affect the PN. Glial cells, activated as part of the inflammatory response to the deposition of β-amyloid (Aβ) and formation of neurofibrillary tangles, release matrix metalloproteinases (MMPs) that are capable of degrading the PN. This thesis describes studies of PN N-acetylgalactosamine and PV-positive neurons in AD, and their relationship to parenchymal tau, Aβ, microglia, astrocytes, and MMPs-2, -3 and -9. The outcome of these studies showed that the PV-positive neurons tend to be spared in AD but there is degradation of surrounding PNs.
Style APA, Harvard, Vancouver, ISO itp.
8

Thurstan, Sarah Ashley. "Acellular mechanisms of extracellular matrix degradation". Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/acellular-mechanisms-of-extracellular-matrix-degradation(7fae308d-8e54-4da6-9c27-4da89ec55ab1).html.

Pełny tekst źródła
Streszczenie:
Exposure of the skin to ultraviolet radiation (UVR) results clinically in the formation of deep wrinkles and mottled pigmentation and histologically, in a vast remodelling of the dermal extracellular matrix (ECM), in particular the elastic fibre network. Fibrillin microfibrils and fibulin-5 are early biomarkers of photoageing, where a loss of these fibres from the dermal epidermal junction is apparent. A study by our group showed that isolated fibrillin microfibrils and fibronectin which are rich in amino acids which absorb energy from UVR (UV-chromophores) are susceptible to UVR-induced damage, whilst UV-chromophore poor collagen type I is not. This research, with other earlier studies, indicates that acellular mechanism may work in tandem with cell-mediated up-regulation of matrix metalloproteinases (MMPs) in the progression of photoageing. This thesis aims to: i) test whether acellular mechanisms of photoageing are a result of direct photon absorption and/or the photodynamic production of reactive oxygen species (ROS); ii) assess the functional consequences of UVB degradation on the susceptibility of fibrillin microfibrils to MMPs and; iii) assay whether ECM proteins are differentially susceptible to solar simulated radiation (SSR) or UVA (315-400nm) alone using physiologically relevant doses of irradiation. Isolated proteins were exposed to UVB (280-315nm) in depleted-O2 conditions and in the presence of deuterium oxide. Depleted-O2 conditions decreased and deuterium oxide conditions increased UVR-induced degradation. Isolated proteins also show a similar pattern of degradation when exposed to H2O2 as an exogenous source of ROS. These results indicate that ROS play an important role in the differential degradation of dermal proteins. MMPs-3 and -9 are both upregulated in the skin after exposure to UVR and have the ability to degrade elastic fibre components. After exposure to UVB, damaged fibrillin microfibrils become more susceptible to degradation by both MMPs-3 and -9. Chromophore-rich fibrillin microfibrils and fibronectin are susceptible to degradation by both SSR and UVA alone, whereas chromophore-poor collagens type I and VI and tropoelastin are not. These results support our previous findings that amino acid composition of proteins is a good indicator of their relative susceptibility to UV-induced damage with a physiologically relevant irradiation system. In conclusion this work shows that ROS are an important mediator of acellular mechanisms of photoageing and that amino acid composition is a good indication of relative susceptibility of proteins to both ROS and UVR. The ability to predict ROS-susceptible proteins also has wider implications for human ageing as a whole.
Style APA, Harvard, Vancouver, ISO itp.
9

Link, Patrick. "ELECTROSPRAYING EXTRACELLULAR MATRIX TO FORM NANOPARTICLES". VCU Scholars Compass, 2017. https://scholarscompass.vcu.edu/etd/5166.

Pełny tekst źródła
Streszczenie:
Chronic Obstructive Pulmonary Disease (COPD) is a leading cause of death worldwide. Alveolar wall destruction is a significant contributor to COPD. Inflammatory macrophages are a major source of the Extracellular Matrix (ECM) proteolysis. ECM breakdown causes air to get trapped in the alveoli, obstructing airflow. One step in curing COPD may be to convert inflammatory to pro-regenerative macrophages. Recently, decellularized ECM scaffolds have shown the ability to induce a pro-regenerative phenotype. Yet these scaffolds are incapable for reaching the alveolar region of the lungs. To reach the alveolar region particles need a diameter of 1-5 μm or smaller than 300 nm. We used protein from decellularized lung tissue to create nanoparticles. By first digesting the protein in acid, we electrosprayed the solution into nanoparticles. The average size of the nanoparticles is 225 (± 67) nm, within the requirements to reach alveoli. However, another barrier exists for treating this disease. That barrier is mucus; mucus hypersecretion is another sign of COPD. The formed particles are capable of penetrating the mucus layer in COPD. After characterizing the particles, we began in vitro investigations. First, we measured cytotoxicity of the nanoparticles. In alveolar epithelial cells, adding nanoparticles to the media increased cellular proliferation. We then added the nanoparticles to isolated murine macrophages. The nanoparticles induced a pro-regenerative phenotypic shift in murine macrophages. These experiments reveal that these nanoparticles may become an effective treatment for degenerative lungs diseases, such as COPD, after further investigation.
Style APA, Harvard, Vancouver, ISO itp.
10

Tissot, Floriane. "Rôle de CD98hc dans les fibroblastes dermiques au cours de l’homéostasie et de la tumorigenèse cutanées". Thesis, Université Côte d'Azur (ComUE), 2017. http://www.theses.fr/2017AZUR4129.

Pełny tekst źródła
Streszczenie:
L’interaction épithélium/mésenchyme est cruciale pour de nombreux processus physiopathologiques. Lors de ma thèse, je me suis intéressée aux signaux mésenchymateux régulant les cellules épithéliales en utilisant comme modèle la peau, qui est composée de 2 compartiments : l’épiderme (épithélium) et le derme (mésenchyme). Les intégrines sont impliquées ces interactions. CD98hc est une protéine transmembranaire à double fonction qui chaperonne des transporteurs d’acides aminés et régule la signalisation des ß intégrines. Elle est exprimée dans les cellules prolifératives telle les cellules épithéliales. Dans la peau, CD98hc est exprimée l’épiderme mais également dans les fibroblastes, cellules post-mitotiques. Mon hypothèse a été que CD98hc participe aux régulations des interactions derme/épiderme. Grâce à un modèle de KO conditionnel de CD98hc dans les fibroblastes dermiques, j’ai mis en évidence que CD98hc permet le maintient des propriétés mécaniques et biologiques du derme, et, de ce fait, régule l’épiderme en conditions d’homéostasie, de perturbation de la barrière et lors de la formation de cancer. De plus, le rôle de CD98hc dans cette interaction apparait comme étant lié à l’âge. En conclusion, mes travaux de thèse montrent le rôle central de l’expression dermique de CD98hc dans le maintien de l’homéostasie cutanée au cours du vieillissement ainsi que lors de la tumorigenèse
The epithelial/mesenchymal interaction is crucial for many physiopathological processes. During my PhD, I focused on mesenchymal signals that regulate epithelial cells behavior using the skin as model. The skin is composed of 2 main compartments: the epidermis (epithelium) and the dermis (mesenchyme). While this crosstalk involves integrins, its regulations are poorly understood. The transmembrane protein CD98hc interacts with amino acid transporter and regulates integrin signaling. CD98hc which is expressed at the cell membrane of proliferative cells, specifically epithelial cells, is required for tissue homeostasis. We found that besides its expression in keratinocytes, CD98hc is also expressed in post-mitotic dermal fibroblast. Hence, I hypothesized that CD98hc is involved in epidermis/dermis crosstalk. Using a conditional KO mouse model that harbor a CD98hc deletion in dermal fibroblast, I have shown that dermal CD98hc is required to maintain mechanical and biochemical properties of the dermis. Moreover, I have shown that those CD98hc-dependent dermal properties are implicated in the regulation of the epidermal cell behavior during homeostasis, cutaneous barrier disruption and tumorigenesis. Moreover, the role of CD98hc in those processes seems to be age-related. To conclude, during my PhD, I have revealed a major role of CD98hc in the maintenance of skin homeostasis during aging and tumorigenesis
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Extracellular matrix"

1

Leach, Jennie B., i Elizabeth M. Powell, red. Extracellular Matrix. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2083-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

D, Comper Wayne, red. Extracellular matrix. Amsterdam: Harwood Academic Publishers, 1996.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

A, Haralson M., i Hassell John R, red. Extracellular matrix: A practical approach. Oxford: IRL Press, 1995.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Streuli, Charles, i Michael Grant. Extracellular Matrix Protocols. New Jersey: Humana Press, 2000. http://dx.doi.org/10.1385/1592590632.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Even-Ram, Sharona, i Vira Artym, red. Extracellular Matrix Protocols. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-59745-413-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Yamaoka, Tetsuji, i Takashi Hoshiba, red. Decellularized Extracellular Matrix. Cambridge: Royal Society of Chemistry, 2019. http://dx.doi.org/10.1039/9781788015998.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Vigetti, Davide, i Achilleas D. Theocharis, red. The Extracellular Matrix. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9133-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Schmuck, Eric G., Peiman Hematti i Amish N. Raval, red. Cardiac Extracellular Matrix. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97421-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Parks, William C., i Robert P. Mecham, red. Extracellular Matrix Degradation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-16861-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Ricard-Blum, Sylvie, red. Extracellular Matrix Omics. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58330-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Extracellular matrix"

1

Huang, Zhen. "Immunohistochemical Characterization of Brain Neural and Vascular Basement Membranes". W Extracellular Matrix, 3–11. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-2083-9_1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Balasubramanian, Swarnalatha, Elizabeth M. Powell i Jennie B. Leach. "Investigating Cell-ECM Interactions and ECM Synthesis in Three-Dimensional Hydrogels". W Extracellular Matrix, 101–9. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-2083-9_10.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Sinyuk, Maksim, Justin D. Lathia i Mariano S. Viapiano. "Characterization and Analysis of Extracellular Matrix in Malignant Brain Tumors and Their Cellular Derivatives". W Extracellular Matrix, 113–38. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-2083-9_11.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Hu, Jianli, Gabrielle M. Curinga i George M. Smith. "Chondroitinase Gene Therapy for Spinal Cord Injury". W Extracellular Matrix, 139–49. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-2083-9_12.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Hennen, Eva, i Andreas Faissner. "Modulation of Neural Stem Cell Expressed Extracellular Matrix (ECM) by Targeting Glycosyltransferases". W Extracellular Matrix, 151–60. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-2083-9_13.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Addington, Caroline P., Christine Pauken i Sarah E. Stabenfeldt. "Evaluating the Spatial and Temporal Protein Production in Neural Tissue Engineering Constructs In Vitro". W Extracellular Matrix, 163–79. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-2083-9_14.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Zuidema, Jonathan M., María C. Hyzinski-García, Alexander A. Mongin i Ryan J. Gilbert. "Cultivation and Imaging of Astrocytes on Protein-Coated Fluorescent Topographies Constructed from Aligned PLLA Electrospun Fibers". W Extracellular Matrix, 181–95. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-2083-9_15.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Xu, Hui, i Sarah C. Heilshorn. "Engineered Microdevices to Study and Manipulate Neural Stem Cell Chemotaxis". W Extracellular Matrix, 197–209. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-2083-9_16.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Zustiak, Silviya Petrova. "Hydrolytically Degradable Polyethylene Glycol (PEG) Hydrogel: Synthesis, Gel Formation, and Characterization". W Extracellular Matrix, 211–26. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-2083-9_17.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Lee, Young il, i Yue Li. "The Use of Synaptic Basal Lamina and Its Components to Identify Sites of Recent Morphological Alterations at Mammalian Neuromuscular Junctions". W Extracellular Matrix, 13–22. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-2083-9_2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Extracellular matrix"

1

"Extracellular matrix in experimental hepatocarcinoma-29". W Bioinformatics of Genome Regulation and Structure/Systems Biology (BGRS/SB-2022) :. Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, 2022. http://dx.doi.org/10.18699/sbb-2022-467.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Freytes, Donald O., Samuel Kolman, Sachin S. Velankar i Stephen F. Badylak. "Rheological Properties of Extracellular Matrix Derived Gels". W ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-176537.

Pełny tekst źródła
Streszczenie:
Bioscaffolds composed of extracellular matrix (ECM) have been used for the repair of a variety of tissues often leading to tissue-specific constructive remodeling [1]. ECM scaffolds are typically prepared by decellularization of tissues and are composed of the structural proteins (e.g. collagen) and functional proteins (e.g. growth factors) that characterize the native ECM. However, for certain applications, the use of ECM scaffolds can be limited by the native two-dimensional sheet form in which they are harvested.
Style APA, Harvard, Vancouver, ISO itp.
3

Joglekar, M. M., M. L. Koloko Ngassie, N. J. Bekker, M. A. Reinders-Luinge, T. Borghuis, J. M. Vonk, S. D. Pouwels i in. "COPD-associated changes in lung extracellular matrix". W ERS International Congress 2022 abstracts. European Respiratory Society, 2022. http://dx.doi.org/10.1183/13993003.congress-2022.2202.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Januskevicius, Andrius, Ieva Janulaityte, Reinoud Gosens, Virginija Kalinauskaite-Zukauske, Rokas Stonkus i Kestutis Malakauskas. "Eosinophils contribute to extracellular matrix remodeling by enhancing pulmonary fibroblasts proliferation, differentiation and extracellular matrix proteins production in asthma". W ERS International Congress 2018 abstracts. European Respiratory Society, 2018. http://dx.doi.org/10.1183/13993003.congress-2018.pa968.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Shreim, Samir, Maxwell Kotlarchyk i Elliot Botvinick. "Microrheology of the Endothelial Glycocalyx and Extracellular Matrix". W Optical Trapping Applications. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/ota.2009.oma1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Qi, Yun, Kang-De Yao i Yuan-Lu Cui. "Biomimetic Fibrous Extracellular Matrix for Cartilage Tissue Engineering". W 2009 3rd International Conference on Bioinformatics and Biomedical Engineering (iCBBE). IEEE, 2009. http://dx.doi.org/10.1109/icbbe.2009.5162455.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Manni, ML, JM Tobolewski, TW Gilbert i TD Oury. "Extracellular Matrix Powder Attenuates Bleomycin-Induced Pulmonary Fibrosis." W American Thoracic Society 2009 International Conference, May 15-20, 2009 • San Diego, California. American Thoracic Society, 2009. http://dx.doi.org/10.1164/ajrccm-conference.2009.179.1_meetingabstracts.a2015.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Liu, A., H. Sun, A. Ledesma-Mendoza, J. Winkler, B. Reeves, M. Gulati, W. Wang, T. Lam i E. Herzog. "Sarcoidosis Extracellular Matrix Regulation of Immune Cell Phenotype". W American Thoracic Society 2020 International Conference, May 15-20, 2020 - Philadelphia, PA. American Thoracic Society, 2020. http://dx.doi.org/10.1164/ajrccm-conference.2020.201.1_meetingabstracts.a5530.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Narciso, M., A. Ulldemolins, D. Navajas, R. Farre, N. Gavara i I. Almendros Lopez. "Aging Induces Stiffening of the Lung Extracellular Matrix". W ERS International Congress 2022 abstracts. European Respiratory Society, 2022. http://dx.doi.org/10.1183/13993003.congress-2022.3463.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Tsiklauri, L., J. Werner, K. Frommer, S. Rehart, S. Wenisch, U. Müller-Ladner i E. Neumann. "P123 Extracellular matrix attenuated matrix-degrading effects of visfatin during adipogenic MSC differentiation". W 39th European Workshop for Rheumatology Research, 28 February–2 March 2019, Lyon, France. BMJ Publishing Group Ltd and European League Against Rheumatism, 2019. http://dx.doi.org/10.1136/annrheumdis-2018-ewrr2019.111.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Extracellular matrix"

1

Quaranta, Vito. Extracellular Matrix in Breast Cancer Invasion. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 2001. http://dx.doi.org/10.21236/ada398487.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Han, Xiaoxing. Quantitative In Vivo Imaging of Breast Tumor Extracellular Matrix. Fort Belvoir, VA: Defense Technical Information Center, maj 2010. http://dx.doi.org/10.21236/ada541944.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Han, Xiaoxing. Quantitative In Vivo Imaging of Breast Tumor Extracellular Matrix. Fort Belvoir, VA: Defense Technical Information Center, maj 2009. http://dx.doi.org/10.21236/ada549531.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Han, Xiaoxing. Quantitative In Vivo Imaging of Breast Tumor Extracellular Matrix. Fort Belvoir, VA: Defense Technical Information Center, maj 2011. http://dx.doi.org/10.21236/ada552848.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Pines, Mark, Arieh Bar, David A. Carrino, Arnold I. Caplan i James A. Dennis. Extracellular Matrix Molecules of the Eggshell as Related to Eggshell Quality. United States Department of Agriculture, 1997. http://dx.doi.org/10.32747/1997.7575270.bard.

Pełny tekst źródła
Streszczenie:
The extracellular matrix of the mineralizing eggshell contains molecules hypothesized to be regulators biomineralization. To study eggshell matrix molecules, a bank of monoclonal antibodies was generated that bound demineralized eggshell matrix or localized to oviduct epithelium. Immunofluorescence staining revealed several staining patterns for antibodies that recognized secretory cells: staining for a majority of columnar lining cells, staining for a minor sub-set of columnar lining cells, intensified staining within epithelial crypts, and staining of the entire tubular gland. Western blotting with the antibody Epi2 on eggshell matrix showed binding to molecules with the apparent molecular weight of eggshell matrix dermatan sulfate proteoglycan (eggshell DSPG) (Carrino, et al., 1997). Immunoblots of cyanogen bromide-cleaved eggshell DSPG revealed broad band of reactivity that shifted to 25 kDa after chondroitinase digestion; indicating that the Epi2 binding site is located on a fragment which contains dermatan sulfate side chains. Immunogold labeling showed that Epi2 binds to secretory vesicles within the non-ciliated cells of the columnar epithelium, while the antibodies Tg1 and Tg2 bind to secretory vesicles of tubular gland cells. Immunogold labeling of demineralized shell matrix showed binding of Epi2, Tg1, and Tg2 to the matrix of the palisades layer, and showed little reactivity to other regions of the shell matrix. Quantification of the immunogold particles within the eggshell matrix revealed that antibodies Epi2 and Tg1 bind all calcified regions equally while antibody Tg2 has a greater affinity for the baseplate region of the calcium reserve assembly.
Style APA, Harvard, Vancouver, ISO itp.
6

Novaro, Virginia. Extracellular Matrix Regulation of Estrogen Receptors in Mouse Mammary Cells. Fort Belvoir, VA: Defense Technical Information Center, październik 2002. http://dx.doi.org/10.21236/ada411451.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Shan, Bin. Deregulated miRNA in Mammary Epithelium by Tumor Promoting Extracellular Matrix. Fort Belvoir, VA: Defense Technical Information Center, sierpień 2010. http://dx.doi.org/10.21236/ada587722.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Chan, Huei-Mei. Mechanism of Abnormal Cell-Extracellular Matrix Interactions in Human Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 1998. http://dx.doi.org/10.21236/ada367382.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Chen, Huei-Mei. Mechanism of Abnormal Cell-Extracellular Matrix Interactions in Human Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, październik 1997. http://dx.doi.org/10.21236/ada340571.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Chen, Huei-Mei. Mechanisms of Abnormal Cell-Extracellular Matrix Interactions in Human Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 1999. http://dx.doi.org/10.21236/ada381192.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii