Gotowa bibliografia na temat „Explosives materials”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Explosives materials”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Explosives materials"
Xie, Xing Hua, Xiao Jie Li, Shi Long Yan, Meng Wang, Ming Xu, Zhi Gang Ma, Hui Liu i Zi Ru Guo. "Low Temperature Explosion for Nanometer Active Materials". Key Engineering Materials 324-325 (listopad 2006): 193–96. http://dx.doi.org/10.4028/www.scientific.net/kem.324-325.193.
Pełny tekst źródłaFawcett, HowardH. "Explosives introduction to reactive and explosive materials". Journal of Hazardous Materials 31, nr 2 (lipiec 1992): 213. http://dx.doi.org/10.1016/0304-3894(92)85035-y.
Pełny tekst źródłaDing, Wen, Tao Guo, Chong Ji i Rui Qi Shen. "Application of Distribution of Oxygen Coefficient in Explosive Neutron Detection". Advanced Materials Research 887-888 (luty 2014): 1040–47. http://dx.doi.org/10.4028/www.scientific.net/amr.887-888.1040.
Pełny tekst źródłaYuanyuan, Li, Niu Yulei, Li kun i Nan Hai. "Experimental study on internal explosion of thermobaric explosives containing metastable intermolecular composite (MIC) materials". Journal of Physics: Conference Series 2478, nr 3 (1.06.2023): 032036. http://dx.doi.org/10.1088/1742-6596/2478/3/032036.
Pełny tekst źródłaYan, Shi Long, Xing Hua Xie i Hui Sheng Zhou. "Deflagration of Emulsion Explosive". Advanced Materials Research 1082 (grudzień 2014): 18–21. http://dx.doi.org/10.4028/www.scientific.net/amr.1082.18.
Pełny tekst źródłaAtmiasri i Gesang Fajar Rahmawan. "EXPLOSIVE DETECTOR DESIGN TO KNOW THE EXISTENCE OF EXPLOSIVE MATERIALS BY COMPARING THE LARGE VALUE OF MEDNET MAGNET USING ARDUINO IN JUANDA AIRPORT AREA". BEST : Journal of Applied Electrical, Science, & Technology 2, nr 1 (2.08.2020): 21–24. http://dx.doi.org/10.36456/best.vol2.no1.2582.
Pełny tekst źródłaHorváth, Tibor, i István Ember. "Characteristics of Homemade Explosive Materials and the Possibilities of their Identification". Land Forces Academy Review 26, nr 2 (1.06.2021): 100–107. http://dx.doi.org/10.2478/raft-2021-0015.
Pełny tekst źródłaXie, Xing Hua, Chun Yang Dai i Hui Sheng Zhou. ""321" Incident Iron Ions Characteristics and Catalytic Mechanism of Thinking". Advanced Materials Research 1082 (grudzień 2014): 395–98. http://dx.doi.org/10.4028/www.scientific.net/amr.1082.395.
Pełny tekst źródłaMYSLIBORSKYI, V. V., A. L. GANZYUK i V. A. NETYAGA. "MEASURES OF FIRE AND EXPLOSION SAFETY OF EXPLOSIVES AND TECHNICAL MEANS DURING CARRIAGE OF FORENSIC EXPLOSION TECHNICAL EXAMINATIONS". Ukrainian Journal of Civil Engineering and Architecture, nr 6 (20.02.2022): 54–61. http://dx.doi.org/10.30838/j.bpsacea.2312.281221.54.814.
Pełny tekst źródłaLefferts, Merel J., i Martin R. Castell. "Vapour sensing of explosive materials". Analytical Methods 7, nr 21 (2015): 9005–17. http://dx.doi.org/10.1039/c5ay02262b.
Pełny tekst źródłaRozprawy doktorskie na temat "Explosives materials"
Dean, Rachel. "Forensic applications of fragmentation of materials by explosives". Thesis, Cranfield University, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.422190.
Pełny tekst źródłaGupta, Sakshi. "Investigation on the enhancement of raman signal and fluorescent organic materials for explosives detection". Thesis, IIT Delhi, 2016. http://localhost:8080/iit/handle/2074/7022.
Pełny tekst źródłaFrota, Octávia. "Development of a low cost cook-off test for assessing the hazard of explosives". Thesis, Cranfield University, 2015. http://dspace.lib.cranfield.ac.uk/handle/1826/9323.
Pełny tekst źródłaReding, Derek James. "Shock induced chemical reactions in energetic structural materials". Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/28174.
Pełny tekst źródłaCommittee Chair: Hanagud, Sathya; Committee Member: Kardomateas, George; Committee Member: McDowell, David; Committee Member: Ruzzene, Massimo; Committee Member: Thadhani, Naresh.
Thomas, Samuel William III. "Molecules and materials for the optical detection of explosives and toxic chemicals". Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/36260.
Pełny tekst źródłaVita.
Includes bibliographical references.
Optical chemosensing, especially using amplifying fluorescent polymers, can allow for the highly sensitive and selective vapor-phase detection of both explosives and highly toxic chemicals, including chemical warfare agents. There are varieties of analyte targets, however, that remain challenging for detection by these methods. Research towards improving this technology has obvious implications for homeland security and soldier survivability. This dissertation details the development of new molecules, materials, and transduction schemes aimed at improving both the versatility and sensitivity of optical chemical detection. Chapter One provides an introduction to the field of fluorescent polymer sensors, principally focusing on their utility in the detection of nitroaromatic explosives. Brief descriptions of other analytical methods used for explosives detection are also included. Chapter Two describes the synthesis and optical properties of a new class of conjugated polymers that contain alkyl-amino groups directly bound to the arene rings of poly(phenylene ethynylene)s and poly(fluorene)s. These materials displayed red-shifted absorption and emission spectra, large Stokes Shifts, as well as long excited state lifetimes.
(cont.) Also described is the use of films of these readily oxidized polymers in the vapor-phase detection of hydrazine down to a concentration of 100 parts-per-billion. This new scheme for the detection of hydrazine vapor relies on the analyte's reduction of oxidized traps ("unquenching") within the polymer film to give a fluorescence "turn-on" signal. Chapter Three begins with an introduction to the various classes of explosive molecules, as well as to the concept of "tagging" plastic explosives with higher vapor pressure dopants in order to make them easier to detect. This is followed by a description of how the taggant DMNB was successfully detected using high band-gap poly(fluorene)s. The higher energy conduction bands of these materials allowed for exergonic electron transfer to DMNB and fluorescence quenching in both the solution and solid states. Phosphorescence is the theme of Chapter Four, in which two research projects based on highly phosphorescent cyclometalated Pt(II) complexes are summarized. This includes the synthesis and optical characterization of a phosphorescent poly(fluorene), one of the repeat units of which is a Pt(ppy)(acac)-type complex. Comparisons of its intrinsic photophysical properties and oxygen-induced quenching behavior to model compounds are also summarized.
(cont.) Chapter Four also details investigations into using oxidative addition reactions of new bis-cyclometalated Pt(II) complexes for the dark-field turn-on chemical detection of cyanogen halides. Incorporating substituents on the ligands that force steric crowding in the square plane accelerated the addition of cyanogen bromide to these complexes, which also correlated with the room-temperature phosphorescence efficiency of these complexes. Exposure of polymer films doped with these complexes gave a dark-field turn on signal to the blue of the reactant that corresponded to the phosphorescence of the Pt(IV) oxidative addition product. Finally, Chapter Five focuses on iptycenes, a very useful structural moiety in the field of optical chemosensing. The development of an improved synthetic procedure for the preparation of the iptycene group is described. This procedure has been showed to be effective in the preparation of a series of new iptycene-containing molecules, including a poly(iptycene). To conclude, the unique counter-aspect ratio alignment behavior of a poly(iptycene) in a stretch-aligned polymer film is summarized. This is rationalized by a "threading" model, in which the chains of the poly(vinyl chloride) matrix occupy the internal-free-volume defined by the poly(iptycene).
by Samuel William Thomas, III.
Ph.D.
Collins, Adam Leigh. "Environmentally responsible energetic materials for use in training ammunition". Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610529.
Pełny tekst źródłaWang, Guangyu. "An MD-SPH Coupled Method for the Simulation of Reactive Energetic Materials". University of Cincinnati / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1491559185266293.
Pełny tekst źródłaAronson, Joshua Boyer. "The Synthesis and Characterization of Energetic Materials From Sodium Azide". Diss., Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/7597.
Pełny tekst źródłaSalinas, Soler Yolanda. "Functional hybrid materials for the optical recognition of nitroaromatic explosives involving supramolecular interactions". Doctoral thesis, Editorial Universitat Politècnica de València, 2013. http://hdl.handle.net/10251/31663.
Pełny tekst źródłaSalinas Soler, Y. (2013). Functional hybrid materials for the optical recognition of nitroaromatic explosives involving supramolecular interactions [Tesis doctoral]. Editorial Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/31663
Alfresco
Premiado
Conroy, Michael W. "Density Functional Theory Studies of Energetic Materials". Scholar Commons, 2009. http://scholarcommons.usf.edu/etd/3691.
Pełny tekst źródłaKsiążki na temat "Explosives materials"
Lecker, Seymour. Shock sensitive industrial materials. Boulder, Colo: Paladin Press, 1988.
Znajdź pełny tekst źródłaKlapötke, Thomas M. Chemistry of high-energy materials. Berlin: De Gruyter, 2010.
Znajdź pełny tekst źródłaKlapötke, Thomas M. Chemistry of high-energy materials. Wyd. 3. Berlin: Walter de Gruyter GmbH & Co., KG, 2015.
Znajdź pełny tekst źródłaKoch, Ernst-Christian. Metal-fluorocarbon based energetic materials. Weinheim: Wiley-VCH, 2012.
Znajdź pełny tekst źródłaM, Klapötke Thomas, red. High energy density materials. Berlin: Springer Verlag, 2007.
Znajdź pełny tekst źródłaErmolaev, Boris. Convective burning and low-velocity detonation in porous media. Lancaster, Pennsylvania: DEStech Publications, Inc., 2019.
Znajdź pełny tekst źródłaAgrawal, Jai P. High energy materials: Propellants, explosives and pyrotechnics. Weinheim: Wiley-VCH, 2010.
Znajdź pełny tekst źródłaNational Research Council (U.S.). Committee on Marking, Rendering Inert, and Licensing of Explosive Materials., red. Marking, rendering inert, and licensing of explosive materials: Interim report. Washington, D.C: National Academy Press, 1997.
Znajdź pełny tekst źródła1927-, Olah George A., i Squire David R, red. Chemistry of energetic materials. San Diego: Academic Press, 1991.
Znajdź pełny tekst źródłaStratta, James. Alternatives to open burning/open detonation of energetic materials: A summary of current technologies. [Champaign, IL]: US Army Corps of Engineers, Construction Engineering Research Laboratories, 1995.
Znajdź pełny tekst źródłaCzęści książek na temat "Explosives materials"
Liu, Jiping. "Explosion Features of Liquid Explosive Materials". W Liquid Explosives, 17–104. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-45847-1_2.
Pełny tekst źródłaOyler, Karl D. "Green Primary Explosives". W Green Energetic Materials, 103–32. Chichester, United Kingdom: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118676448.ch05.
Pełny tekst źródłaCardarelli, François. "Fuels, Propellants, and Explosives". W Materials Handbook, 1465–96. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-38925-7_17.
Pełny tekst źródłaLieb, Noah, Neha Mehta, Karl Oyler i Kimberly Spangler. "Sustainable High Explosives Development". W Energetic Materials, 95–113. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2017. http://dx.doi.org/10.1201/9781315166865-8.
Pełny tekst źródłaFox, Malcolm A. "Initiating Explosives". W Glossary for the Worldwide Transportation of Dangerous Goods and Hazardous Materials, 119–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-11890-0_39.
Pełny tekst źródłaMartz, H. E., D. J. Schneberk, G. P. Roberson, S. G. Azevedo i S. K. Lynch. "Computerized Tomography of High Explosives". W Nondestructive Characterization of Materials IV, 187–95. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-0670-0_23.
Pełny tekst źródłaJackson, Scott I. "Deflagration Phenomena in Energetic Materials: An Overview". W Non-Shock Initiation of Explosives, 245–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-87953-4_5.
Pełny tekst źródłaFox, Malcolm A. "Explosives and Class 1". W Glossary for the Worldwide Transportation of Dangerous Goods and Hazardous Materials, 74–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-11890-0_28.
Pełny tekst źródłaHummel, Rolf E., Anna M. Fuller, Claus Schöllhorn i Paul H. Holloway. "Remote Sensing of Explosive Materials Using Differential Reflection Spectroscopy". W Trace Chemical Sensing of Explosives, 303–10. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2006. http://dx.doi.org/10.1002/9780470085202.ch15.
Pełny tekst źródłaLi, Dongdong, i Jihong Yu. "AIEgens-Functionalized Porous Materials for Explosives Detection". W ACS Symposium Series, 129–50. Washington, DC: American Chemical Society, 2016. http://dx.doi.org/10.1021/bk-2016-1227.ch005.
Pełny tekst źródłaStreszczenia konferencji na temat "Explosives materials"
Brown, W. T., M. F. Schmidt i P. T. Dzwilewski. "Electromagnetic Radiation From the Detonation of Metal Encased Explosives". W ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2011. http://dx.doi.org/10.1115/smasis2011-5204.
Pełny tekst źródłaKennedy, James E. "Innovation and Miniaturization in Applications of Explosives". W ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2011. http://dx.doi.org/10.1115/smasis2011-5161.
Pełny tekst źródłaXie, Xinghua, Jing Zhu, Huisheng Zhou i Shilong Yan. "Nanometer functional materials from explosives". W Second International Conference on Smart Materials and Nanotechnology in Engineering, redaktorzy Jinsong Leng, Anand K. Asundi i Wolfgang Ecke. SPIE, 2009. http://dx.doi.org/10.1117/12.835722.
Pełny tekst źródłaChou, Pei Chi, i William J. Flis. "A Composite-Sheathed Compression Test for Characterizing Pressure-Hardening Materials". W ASME 1998 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/imece1998-1189.
Pełny tekst źródłaPapantonakis, Michael R., Viet Nguyen, Robert Furstenberg, Andrew Kusterbeck i R. A. McGill. "Predicting the persistence of explosives materials". W Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XX, redaktorzy Jason A. Guicheteau i Chris R. Howle. SPIE, 2019. http://dx.doi.org/10.1117/12.2518974.
Pełny tekst źródłaPrakash, Naveen, i Gary D. Seidel. "Coupled Electromechanical Peristatic Simulation of Deformation and Damage Sensing in Granular Materials". W ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/smasis2016-9235.
Pełny tekst źródłaPapantonakis, Michael R., Viet Nguyen, Robert Furstenberg i R. Andrew McGill. "Modeling the sublimation behavior of explosives materials". W Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XXIII, redaktorzy Jason A. Guicheteau i Chris R. Howle. SPIE, 2022. http://dx.doi.org/10.1117/12.2618866.
Pełny tekst źródłaTalamadupula, Krishna K., Adarsh K. Chaurasia i Gary D. Seidel. "2-Scale Hierarchical Multiscale Modeling of Piezoresistive Response in Polymer Nanocomposite Bonded Explosives". W ASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/smasis2015-9111.
Pełny tekst źródłaDYLONG, A. "Impact of TNT Storage Time on Its Physicochemical and Explosives Properties". W Terotechnology XII. Materials Research Forum LLC, 2022. http://dx.doi.org/10.21741/9781644902059-21.
Pełny tekst źródłaRibeiro, J. B., R. L. Mendes, A. R. Farinha, I. Ye Plaksin, J. A. Campos, J. C. Góis, Mark Elert i in. "HIGH-ENERGY-RATE PROCESSING OF MATERIALS USING EXPLOSIVES". W SHOCK COMPRESSION OF CONDENSED MATTER 2009: Proceedings of the American Physical Society Topical Group on Shock Compression of Condensed Matter. AIP, 2009. http://dx.doi.org/10.1063/1.3295006.
Pełny tekst źródłaRaporty organizacyjne na temat "Explosives materials"
Meade, Roger Allen. Materials versus Explosives: A Laboratory Divided. Office of Scientific and Technical Information (OSTI), czerwiec 2018. http://dx.doi.org/10.2172/1457287.
Pełny tekst źródłaPetrie, Mark A., Gary Koolpe, Ripudaman Malhotra i Paul Penwell. Performance-Enhancing Materials for Future Generation Explosives and Propellants. Fort Belvoir, VA: Defense Technical Information Center, maj 2012. http://dx.doi.org/10.21236/ada561743.
Pełny tekst źródłaChapman, Robert D., Richard A. Hollins, Thomas J. Groshens, Don Thompson, Thomas J. Schilling, Daniel Wooldridge, Phillip N. Cash, Tamara S. Jones i Guck T. Ooi. N,N-Dihaloamine Explosives as Harmful Agent Defeat Materials. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 2014. http://dx.doi.org/10.21236/ada602478.
Pełny tekst źródłaBurgess, C. E., J. D. Woodyard, K. A. Rainwater, J. M. Lightfoot i B. R. Richardson. Literature review of the lifetime of DOE materials: Aging of plastic bonded explosives and the explosives and polymers contained therein. Office of Scientific and Technical Information (OSTI), wrzesień 1998. http://dx.doi.org/10.2172/290850.
Pełny tekst źródłaGoheen, Steven C., James A. Campbell, Ying Shi i Steve Aust. Enzymes for Degradation of Energetic Materials and Demilitarization of Explosives Stockpiles: SERDP Final Report 9/00. Office of Scientific and Technical Information (OSTI), listopad 2000. http://dx.doi.org/10.2172/15001065.
Pełny tekst źródłaSC Goheen, JA Campbell, Y Shi i S Aust. Enzymes for Degradation of Energetic Materials and Demilitarization of Explosives Stockpiles SERDP Final Report, 9/00. Office of Scientific and Technical Information (OSTI), listopad 2000. http://dx.doi.org/10.2172/767002.
Pełny tekst źródłaShah, M. M. Enzymes for Degradation of Energetic Materials and Demilitarization of Explosives Stockpiles - SERDP Annual (Interim) Report, 12/98. Office of Scientific and Technical Information (OSTI), styczeń 1999. http://dx.doi.org/10.2172/2881.
Pełny tekst źródłaLeduc, D. Design Guide for Packaging and Offsite Transportation of Nuclear Components, Special Assemblies, and Radioactive Materials Associated with Nuclear Explosives and Weapons Safety Program. Office of Scientific and Technical Information (OSTI), czerwiec 1994. http://dx.doi.org/10.2172/1183729.
Pełny tekst źródłaCASE JR., ROGER S. Aktau Plastics Plant Explosives Material Report. Office of Scientific and Technical Information (OSTI), grudzień 1999. http://dx.doi.org/10.2172/15219.
Pełny tekst źródłaBardenhagen, S. G., E. N. Harstad, P. J. Maudlin, G. T. Gray i J. C. Jr Foster. Viscoelastic models for explosive binder materials. Office of Scientific and Technical Information (OSTI), lipiec 1997. http://dx.doi.org/10.2172/627369.
Pełny tekst źródła