Artykuły w czasopismach na temat „Exogenous fatty acid”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Exogenous fatty acid”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Song, Jae-Eun, Tiago C. Alves, Bernardo Stutz, Matija Šestan-Peša, Nicole Kilian, Sungho Jin, Sabrina Diano, Richard G. Kibbey i Tamas L. Horvath. "Mitochondrial Fission Governed by Drp1 Regulates Exogenous Fatty Acid Usage and Storage in Hela Cells". Metabolites 11, nr 5 (18.05.2021): 322. http://dx.doi.org/10.3390/metabo11050322.
Pełny tekst źródłaPeters-Golden, M., i C. Shelly. "Inhibitory effect of exogenous arachidonic acid on alveolar macrophage 5-lipoxygenase metabolism. Role of ATP depletion." Journal of Immunology 140, nr 6 (15.03.1988): 1958–66. http://dx.doi.org/10.4049/jimmunol.140.6.1958.
Pełny tekst źródłaDesfougères, Thomas, Thierry Ferreira, Thierry Bergès i Matthieu Régnacq. "SFH2 regulates fatty acid synthase activity in the yeast Saccharomyces cerevisiae and is critical to prevent saturated fatty acid accumulation in response to haem and oleic acid depletion". Biochemical Journal 409, nr 1 (11.12.2007): 299–309. http://dx.doi.org/10.1042/bj20071028.
Pełny tekst źródłaYao, Jiangwei, i Charles O. Rock. "Exogenous fatty acid metabolism in bacteria". Biochimie 141 (październik 2017): 30–39. http://dx.doi.org/10.1016/j.biochi.2017.06.015.
Pełny tekst źródłaMahajan, Sandeep, i G. K. Khuller. "Cerulenin inhibition of lipid synthesis and its reversal by exogenous fatty acids in Mycobacterium smegmatis ATCC 607". Canadian Journal of Biochemistry and Cell Biology 63, nr 2 (1.02.1985): 85–90. http://dx.doi.org/10.1139/o85-012.
Pełny tekst źródłaSaito, Holly E., John R. Harp i Elizabeth M. Fozo. "Incorporation of Exogenous Fatty Acids Protects Enterococcus faecalis from Membrane-Damaging Agents". Applied and Environmental Microbiology 80, nr 20 (15.08.2014): 6527–38. http://dx.doi.org/10.1128/aem.02044-14.
Pełny tekst źródłaGibbons, G. F., i F. J. Burnham. "Effect of nutritional state on the utilization of fatty acids for hepatitic triacylglycerol synthesis and secretion as very-low-density lipoprotein". Biochemical Journal 275, nr 1 (1.04.1991): 87–92. http://dx.doi.org/10.1042/bj2750087.
Pełny tekst źródłaBlack, Paul N., i Concetta C. DiRusso. "Transmembrane Movement of Exogenous Long-Chain Fatty Acids: Proteins, Enzymes, and Vectorial Esterification". Microbiology and Molecular Biology Reviews 67, nr 3 (wrzesień 2003): 454–72. http://dx.doi.org/10.1128/mmbr.67.3.454-472.2003.
Pełny tekst źródłaYamasaki, Tomohiro, Lumin Zhang, Tyrone Dowdy, Adrian Lita, Kazuhiko Kurozumi i Mioara Larion. "TMET-15. THE COMBINATIONAL EFFECT OF INHIBITOR FOR A FATTY ACID DESATURASE AND A FATTY ACID TRANSPORTER ON GLIOMA GROWTH". Neuro-Oncology 25, Supplement_5 (1.11.2023): v275—v276. http://dx.doi.org/10.1093/neuonc/noad179.1059.
Pełny tekst źródłaPuteri Afiqah Abdul Wahab i Aziz Ahmad. "Effects of Exogenous Arachidonic Acid on Morphological Traits and Fatty Acid Profile of Rice (Oryza sativa L.) Grown on Saline Soil". Universiti Malaysia Terengganu Journal of Undergraduate Research 1, nr 3 (31.07.2019): 68–78. http://dx.doi.org/10.46754/umtjur.v1i3.80.
Pełny tekst źródłaWetzels, J. F., X. Wang, P. E. Gengaro, R. A. Nemenoff, T. J. Burke i R. W. Schrier. "Glycine protection against hypoxic but not phospholipase A2-induced injury in rat proximal tubules". American Journal of Physiology-Renal Physiology 264, nr 1 (1.01.1993): F94—F99. http://dx.doi.org/10.1152/ajprenal.1993.264.1.f94.
Pełny tekst źródłaCeddia, RB, i R. Curi. "Leptin controls the fate of fatty acids in isolated rat white adipocytes". Journal of Endocrinology 175, nr 3 (1.12.2002): 735–44. http://dx.doi.org/10.1677/joe.0.1750735.
Pełny tekst źródłaGreen, Charlotte J., Deborah Johnson, Harsh D. Amin, Pamela Sivathondan, Michael A. Silva, Lai Mun Wang, Lara Stevanato i in. "Characterization of lipid metabolism in a novel immortalized human hepatocyte cell line". American Journal of Physiology-Endocrinology and Metabolism 309, nr 6 (15.09.2015): E511—E522. http://dx.doi.org/10.1152/ajpendo.00594.2014.
Pełny tekst źródłaYazawa, Hisashi, Hitoshi Iwahashi, Yasushi Kamisaka, Kazuyoshi Kimura, Tsunehiro Aki, Kazuhisa Ono i Hiroshi Uemura. "Heterologous Production of Dihomo-γ-Linolenic Acid in Saccharomyces cerevisiae". Applied and Environmental Microbiology 73, nr 21 (14.09.2007): 6965–71. http://dx.doi.org/10.1128/aem.01008-07.
Pełny tekst źródłaWu, Wei-Jia, Ying-Ning Zou, Zhi-Yan Xiao, Fang-Ling Wang, Abeer Hashem, Elsayed Fathi Abd_Allah i Qiang-Sheng Wu. "Changes in Fatty Acid Profiles in Seeds of Camellia oleifera Treated by Mycorrhizal Fungi and Glomalin". Horticulturae 10, nr 6 (2.06.2024): 580. http://dx.doi.org/10.3390/horticulturae10060580.
Pełny tekst źródłaLongnus, Sarah L., Richard B. Wambolt, Rick L. Barr, Gary D. Lopaschuk i Michael F. Allard. "Regulation of myocardial fatty acid oxidation by substrate supply". American Journal of Physiology-Heart and Circulatory Physiology 281, nr 4 (1.10.2001): H1561—H1567. http://dx.doi.org/10.1152/ajpheart.2001.281.4.h1561.
Pełny tekst źródłaCropp, T. Ashton, Adam A. Smogowicz, Edmund W. Hafner, Claudio D. Denoya, Hamish AI McArthur i Kevin A. Reynolds. "Fatty-acid biosynthesis in a branched-chain α-keto acid dehydrogenase mutant ofStreptomyces avermitilis". Canadian Journal of Microbiology 46, nr 6 (1.06.2000): 506–14. http://dx.doi.org/10.1139/w00-028.
Pełny tekst źródłaWendel, Angela A., Daniel E. Cooper, Olga R. Ilkayeva, Deborah M. Muoio i Rosalind A. Coleman. "Glycerol-3-phosphate Acyltransferase (GPAT)-1, but Not GPAT4, Incorporates Newly Synthesized Fatty Acids into Triacylglycerol and Diminishes Fatty Acid Oxidation". Journal of Biological Chemistry 288, nr 38 (1.08.2013): 27299–306. http://dx.doi.org/10.1074/jbc.m113.485219.
Pełny tekst źródłaPech-Canul, Ángel, Joaquina Nogales, Alfonso Miranda-Molina, Laura Álvarez, Otto Geiger, María José Soto i Isabel M. López-Lara. "FadD Is Required for Utilization of Endogenous Fatty Acids Released from Membrane Lipids". Journal of Bacteriology 193, nr 22 (16.09.2011): 6295–304. http://dx.doi.org/10.1128/jb.05450-11.
Pełny tekst źródłaYao, Jiangwei, Megan E. Ericson, Matthew W. Frank i Charles O. Rock. "Enoyl-Acyl Carrier Protein Reductase I (FabI) Is Essential for the Intracellular Growth of Listeria monocytogenes". Infection and Immunity 84, nr 12 (10.10.2016): 3597–607. http://dx.doi.org/10.1128/iai.00647-16.
Pełny tekst źródłaTitov, Vladimir Nicolaevich, i Vladimir Pavlovich Shirinsky. "Insulin resistance: the conflict between biological settings of energy metabolism and human lifestyle (a glance at the problem from evolutionary viewpoint)". Diabetes mellitus 19, nr 4 (31.08.2016): 286–94. http://dx.doi.org/10.14341/dm7959.
Pełny tekst źródłaChattopadhyay, Panchanon, Santu Kumar Banerjee, Kalyani Sen i Parul Chakrabarti. "Lipid profiles of conidia of Aspergillus niger and a fatty acid auxotroph". Canadian Journal of Microbiology 33, nr 12 (1.12.1987): 1116–20. http://dx.doi.org/10.1139/m87-195.
Pełny tekst źródłaLiang, Zhenye, Zongzheng Jiang, Sen Wu, Yujia Zhai, Shuqi You i Chang Xu. "Exogenous Fatty Acids Remodel the Muscle Fatty Acids Composition of the GIFT Tilapia (Oreochromis niloticus)". Aquaculture Research 2024 (14.03.2024): 1–13. http://dx.doi.org/10.1155/2024/2715178.
Pełny tekst źródłaKingry, Luke C., Jason E. Cummings, Kerry W. Brookman, Gopal R. Bommineni, Peter J. Tonge i Richard A. Slayden. "The Francisella tularensis FabI Enoyl-Acyl Carrier Protein Reductase Gene Is Essential to Bacterial Viability and Is Expressed during Infection". Journal of Bacteriology 195, nr 2 (9.11.2012): 351–58. http://dx.doi.org/10.1128/jb.01957-12.
Pełny tekst źródłaRavi, Divya, Carmen del Genio, Haider Ghiasuddin i Arti Gaur. "FSMP-15. EVALUATING THE ROLE OF LONG-CHAIN FATTY ACID METABOLISM IN PROMOTING GLIOBLASTOMA GROWTH". Neuro-Oncology Advances 3, Supplement_1 (1.03.2021): i19. http://dx.doi.org/10.1093/noajnl/vdab024.079.
Pełny tekst źródłaChamberlin, M. E., i L. J. Mandel. "Substrate support of medullary thick ascending limb oxygen consumption". American Journal of Physiology-Renal Physiology 251, nr 4 (1.10.1986): F758—F763. http://dx.doi.org/10.1152/ajprenal.1986.251.4.f758.
Pełny tekst źródłaZhu, Kun, Xiang Ding, Mudcharee Julotok i Brian J. Wilkinson. "Exogenous Isoleucine and Fatty Acid Shortening Ensure the High Content of Anteiso-C15:0 Fatty Acid Required for Low-Temperature Growth of Listeria monocytogenes". Applied and Environmental Microbiology 71, nr 12 (grudzień 2005): 8002–7. http://dx.doi.org/10.1128/aem.71.12.8002-8007.2005.
Pełny tekst źródłaJenkins, Julie K., i Polly D. Courtney. "Lactobacillusgrowth and membrane composition in the presence of linoleic or conjugated linoleic acid". Canadian Journal of Microbiology 49, nr 1 (1.01.2003): 51–57. http://dx.doi.org/10.1139/w03-003.
Pełny tekst źródłaSauro, V. S., i K. P. Strickland. "Changes in oleic acid oxidation and incorporation into lipids of differentiating L6 myoblasts cultured in normal or fatty acid-supplemented growth medium". Biochemical Journal 244, nr 3 (15.06.1987): 743–48. http://dx.doi.org/10.1042/bj2440743.
Pełny tekst źródłaHopp, J. F., i W. K. Palmer. "Electrical stimulation alters fatty acid metabolism in isolated skeletal muscle". Journal of Applied Physiology 68, nr 6 (1.06.1990): 2473–81. http://dx.doi.org/10.1152/jappl.1990.68.6.2473.
Pełny tekst źródłaWIGGINS, David, i Geoffrey F. GIBBONS. "Origin of hepatic very-low-density lipoprotein triacylglycerol: the contribution of cellular phospholipid". Biochemical Journal 320, nr 2 (1.12.1996): 673–79. http://dx.doi.org/10.1042/bj3200673.
Pełny tekst źródłaXu, Tao, Siddharth K. Tripathi, Qin Feng, Michael C. Lorenz, Marsha A. Wright, Melissa R. Jacob, Melanie M. Mask i in. "A Potent Plant-Derived Antifungal Acetylenic Acid Mediates Its Activity by Interfering with Fatty Acid Homeostasis". Antimicrobial Agents and Chemotherapy 56, nr 6 (19.03.2012): 2894–907. http://dx.doi.org/10.1128/aac.05663-11.
Pełny tekst źródłaLiang, Xiaohan, Jianmin Cui, Xuke Yang, Ningbo Xia, Yaqiong Li, Junlong Zhao, Nishith Gupta i Bang Shen. "Acquisition of exogenous fatty acids renders apicoplast-based biosynthesis dispensable in tachyzoites of Toxoplasma". Journal of Biological Chemistry 295, nr 22 (27.04.2020): 7743–52. http://dx.doi.org/10.1074/jbc.ra120.013004.
Pełny tekst źródłaMcDonough, Virginia M., i Therese M. Roth. "Growth temperature affects accumulation of exogenous fatty acids and fatty acid composition in Schizosaccharomyces pombe". Antonie van Leeuwenhoek 86, nr 4 (2004): 349–54. http://dx.doi.org/10.1007/s10482-004-0515-0.
Pełny tekst źródłaMcDonough, Virginia M., i Therese M. Roth. "Growth temperature affects accumulation of exogenous fatty acids and fatty acid composition in Schizosaccharomyces pombe". Antonie van Leeuwenhoek 86, nr 4 (styczeń 2005): 349–54. http://dx.doi.org/10.1007/s10482-005-0515-8.
Pełny tekst źródłaMaghfira, Lativa Lisya, László Stündl, Milán Fehér i Anis Asmediana. "Review on the fatty acid profile and free fatty acid of common carp (Cyprinus carpio)". Acta Agraria Debreceniensis, nr 2 (1.12.2023): 99–105. http://dx.doi.org/10.34101/actaagrar/2/13290.
Pełny tekst źródłaSubramanian, Chitra, Charles O. Rock i Yong-Mei Zhang. "DesT Coordinates the Expression of Anaerobic and Aerobic Pathways for Unsaturated Fatty Acid Biosynthesis in Pseudomonas aeruginosa". Journal of Bacteriology 192, nr 1 (30.10.2009): 280–85. http://dx.doi.org/10.1128/jb.00404-09.
Pełny tekst źródłaKovalevskaya, N. P. "Effect of Auxin on Fatty Acid Composition and Activity of Acyl-Lipid Desaturases in Sprouts of Spring Wheat <i>Triticum aestivum</i> L." Биологические мембраны Журнал мембранной и клеточной биологии 40, nr 1 (1.01.2023): 71–80. http://dx.doi.org/10.31857/s0233475522060081.
Pełny tekst źródłaKoundouros, Nikos, i George Poulogiannis. "Reprogramming of fatty acid metabolism in cancer". British Journal of Cancer 122, nr 1 (10.12.2019): 4–22. http://dx.doi.org/10.1038/s41416-019-0650-z.
Pełny tekst źródłaForstermann, U., i B. Neufang. "Endothelium-dependent vasodilation by melittin: are lipoxygenase products involved?" American Journal of Physiology-Heart and Circulatory Physiology 249, nr 1 (1.07.1985): H14—H19. http://dx.doi.org/10.1152/ajpheart.1985.249.1.h14.
Pełny tekst źródłaBlack, P. N., i Q. Zhang. "Evidence that His110 of the protein FadL in the outer membrane of Escherichia coli is involved in the binding and uptake of long-chain fatty acids: possible role of this residue in carboxylate binding". Biochemical Journal 310, nr 2 (1.09.1995): 389–94. http://dx.doi.org/10.1042/bj3100389.
Pełny tekst źródłaHarp, John R., Holly E. Saito, Allen K. Bourdon, Jinnethe Reyes, Cesar A. Arias, Shawn R. Campagna i Elizabeth M. Fozo. "Exogenous Fatty Acids Protect Enterococcus faecalis from Daptomycin-Induced Membrane Stress Independently of the Response Regulator LiaR". Applied and Environmental Microbiology 82, nr 14 (13.05.2016): 4410–20. http://dx.doi.org/10.1128/aem.00933-16.
Pełny tekst źródłaByers, David M., i Zhiwei Shen. "Biochemical evidence against protein-mediated uptake of myristic acid in the bioluminescent marine bacteriumVibrio harveyi". Canadian Journal of Microbiology 48, nr 10 (1.10.2002): 933–39. http://dx.doi.org/10.1139/w02-092.
Pełny tekst źródłaMalaisse, W. J., F. Malaisse-Lagae, A. Sener i C. Hellerström. "Participation of endogenous fatty acids in the secretory activity of the pancreatic B-cell". Biochemical Journal 227, nr 3 (1.05.1985): 995–1002. http://dx.doi.org/10.1042/bj2270995.
Pełny tekst źródłaDorea, J. R. R., i L. E. Armentano. "Effects of common dietary fatty acids on milk yield and concentrations of fat and fatty acids in dairy cattle". Animal Production Science 57, nr 11 (2017): 2224. http://dx.doi.org/10.1071/an17335.
Pełny tekst źródłaWang, Ya-Di, Jiao-Yang Li, Yu Qin, Qiong Liu, Zhe-Zhen Liao i Xin-Hua Xiao. "Exogenous Hydrogen Sulfide Alleviates-Induced Intracellular Inflammation in HepG2 Cells". Experimental and Clinical Endocrinology & Diabetes 128, nr 03 (17.10.2019): 137–43. http://dx.doi.org/10.1055/a-0999-0149.
Pełny tekst źródłaLabarthe, François, Maya Khairallah, Bertrand Bouchard, William C. Stanley i Christine Des Rosiers. "Fatty acid oxidation and its impact on response of spontaneously hypertensive rat hearts to an adrenergic stress: benefits of a medium-chain fatty acid". American Journal of Physiology-Heart and Circulatory Physiology 288, nr 3 (marzec 2005): H1425—H1436. http://dx.doi.org/10.1152/ajpheart.00722.2004.
Pełny tekst źródłaProbst, I., R. Spahr, C. Schweickhardt, D. H. Hunneman i H. M. Piper. "Carbohydrate and fatty acid metabolism of cultured adult cardiac myocytes". American Journal of Physiology-Heart and Circulatory Physiology 250, nr 5 (1.05.1986): H853—H860. http://dx.doi.org/10.1152/ajpheart.1986.250.5.h853.
Pełny tekst źródłaMartínez-Micaelo, N., N. González-Abuín, M. Pinent, A. Ardévol i M. Blay. "Dietary fatty acid composition is sensed by the NLRP3 inflammasome: omega-3 fatty acid (DHA) prevents NLRP3 activation in human macrophages". Food & Function 7, nr 8 (2016): 3480–87. http://dx.doi.org/10.1039/c6fo00477f.
Pełny tekst źródłaChatham, John C., Zhi-Ping Gao i John R. Forder. "Impact of 1 wk of diabetes on the regulation of myocardial carbohydrate and fatty acid oxidation". American Journal of Physiology-Endocrinology and Metabolism 277, nr 2 (1.08.1999): E342—E351. http://dx.doi.org/10.1152/ajpendo.1999.277.2.e342.
Pełny tekst źródła