Artykuły w czasopismach na temat „Excitable media”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Excitable media.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Excitable media”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Zykov, Vladimir. "Excitable media". Scholarpedia 3, nr 5 (2008): 1834. http://dx.doi.org/10.4249/scholarpedia.1834.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Colosimo, A. "Theory of excitable media." Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 275, nr 2 (kwiecień 1989): 207–8. http://dx.doi.org/10.1016/0022-0728(89)87179-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Colosimo, A. "Theory of Excitable Media." Bioelectrochemistry and Bioenergetics 21, nr 2 (kwiecień 1989): 207–8. http://dx.doi.org/10.1016/0302-4598(89)80011-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Andrecut, M. "A Simple Three-States Cellular Automaton for Modelling Excitable Media". International Journal of Modern Physics B 12, nr 05 (20.02.1998): 601–7. http://dx.doi.org/10.1142/s0217979298000363.

Pełny tekst źródła
Streszczenie:
Wave propagation in excitable media provides an important example of spatiotemporal self-organization. The Belousov–Zhabotinsky (BZ) reaction and the impulse propagation along nerve axons are two well-known examples of this phenomenon. Excitable media have been modelled by continuous partial differential equations and by discrete cellular automata. Here we describe a simple three-states cellular automaton model based on the properties of excitation and recovery that are essential to excitable media. Our model is able to reproduce the dynamics of patterns observed in excitable media.
Style APA, Harvard, Vancouver, ISO itp.
5

Davydov, Davydov, Morozov, Stolyarov i Yamaguchi. "Autowaves in moving excitable media". Condensed Matter Physics 7, nr 3 (2004): 565. http://dx.doi.org/10.5488/cmp.7.3.565.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Hagberg, A., i E. Meron. "Propagation failure in excitable media". Physical Review E 57, nr 1 (1.01.1998): 299–303. http://dx.doi.org/10.1103/physreve.57.299.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Karamysheva, T. V. "Traveling waves in excitable media". Differential Equations 48, nr 3 (marzec 2012): 446–48. http://dx.doi.org/10.1134/s0012266112030172.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Vasiev, Bakthier, Florian Siegert i Cornelis Weijer. "Multiarmed Spirals in Excitable Media". Physical Review Letters 78, nr 12 (24.03.1997): 2489–92. http://dx.doi.org/10.1103/physrevlett.78.2489.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Tóth, Ágota, i Kenneth Showalter. "Logic gates in excitable media". Journal of Chemical Physics 103, nr 6 (8.08.1995): 2058–66. http://dx.doi.org/10.1063/1.469732.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Meron, Ehud. "Pattern formation in excitable media". Physics Reports 218, nr 1 (wrzesień 1992): 1–66. http://dx.doi.org/10.1016/0370-1573(92)90098-k.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

CARTWRIGHT, JULYAN H. E., VÍCTOR M. EGUÍLUZ, EMILIO HERNÁNDEZ-GARCÍA i ORESTE PIRO. "DYNAMICS OF ELASTIC EXCITABLE MEDIA". International Journal of Bifurcation and Chaos 09, nr 11 (listopad 1999): 2197–202. http://dx.doi.org/10.1142/s0218127499001620.

Pełny tekst źródła
Streszczenie:
The Burridge–Knopoff model of earthquake faults with viscous friction is equivalent to a van der Pol–FitzHugh–Nagumo model for excitable media with elastic coupling. The lubricated creep–slip friction law we use in Burridge–Knopoff model describes the frictional sliding dynamics of a range of real materials. Low-dimensional structures including synchronous oscillations and propagating fronts are dominant, in agreement with the results of laboratory friction experiments. Here we explore the dynamics of fronts in elastic excitable media.
Style APA, Harvard, Vancouver, ISO itp.
12

SAGUÉS, F., S. ALONSO i J. M. SANCHO. "WAVE PATTERN DYNAMICS IN FLUCTUATING MEDIA". International Journal of Modern Physics C 13, nr 09 (listopad 2002): 1243–52. http://dx.doi.org/10.1142/s0129183102004091.

Pełny tekst źródła
Streszczenie:
Analytical and numerical results on the ordering role of external random fluctuations in excitable systems are presented. Our study focuses on a simple model for excitable systems. Regular waves are created and sustained out of noise when the system is forced with random perturbations. Explicit results for the generation and dynamics of rings and targets are presented.
Style APA, Harvard, Vancouver, ISO itp.
13

GUO, YUZHU, YIFAN ZHAO, DANIEL COCA i S. A. BILLINGS. "A SIMPLE SCALAR COUPLED MAP LATTICE MODEL FOR EXCITABLE MEDIA". International Journal of Bifurcation and Chaos 21, nr 11 (listopad 2011): 3277–92. http://dx.doi.org/10.1142/s0218127411030520.

Pełny tekst źródła
Streszczenie:
A simple scalar coupled map lattice (sCML) model for excitable media is derived in this paper. The new model, which has a simple structure, is shown to be closely related to the observed phenomena in excitable media. Properties of the sCML model are also investigated. Illustrative examples show that this kind of model is capable of reproducing the behavior of excitable media and of generating complex spatiotemporal patterns.
Style APA, Harvard, Vancouver, ISO itp.
14

ZHAO, Y., S. A. BILLINGS i ALEXANDER F. ROUTH. "IDENTIFICATION OF EXCITABLE MEDIA USING CELLULAR AUTOMATA MODELS". International Journal of Bifurcation and Chaos 17, nr 01 (styczeń 2007): 153–68. http://dx.doi.org/10.1142/s0218127407017239.

Pełny tekst źródła
Streszczenie:
Excitable media represent an important class of spatio-temporal systems which can be studied using cellular automata models. In the present study examples of excitable media behavior generated using simple cellular automata models are introduced. A mutual information algorithm is then derived to determine the neighborhood, the excitation threshold, and the number of excitation states. Based on this information two methods of identifying the rule which describes the excitable media pattern using a multimodel and a polynomial model are introduced. The results are illustrated using simulated examples and real data from a Belousov–Zhabotinskii experiment.
Style APA, Harvard, Vancouver, ISO itp.
15

Nakano, Tadashi, Jianwei Shuai, Takako Koujin, Tatsuya Suda, Yasushi Hiraoka i Tokuko Haraguchi. "Biological excitable media based on non-excitable cells and calcium signaling". Nano Communication Networks 1, nr 1 (marzec 2010): 43–49. http://dx.doi.org/10.1016/j.nancom.2010.03.002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Sendiña-Nadal, I., M. Gómez-Gesteira, V. Pérez-Muñuzuri, V. Pérez-Villar, J. Armero, L. Ramírez-Piscina, J. Casademunt, F. Sagués i J. M. Sancho. "Wave competition in excitable modulated media". Physical Review E 56, nr 6 (1.12.1997): 6298–301. http://dx.doi.org/10.1103/physreve.56.6298.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Schebesch, I., i H. Engel. "Wave propagation in heterogeneous excitable media". Physical Review E 57, nr 4 (1.04.1998): 3905–10. http://dx.doi.org/10.1103/physreve.57.3905.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Pechenik, Leonid, i Herbert Levine. "Refraction of waves in excitable media". Physical Review E 58, nr 3 (1.09.1998): 2910–17. http://dx.doi.org/10.1103/physreve.58.2910.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Kessler, David A., Herbert Levine i William Reynolds. "Spiral-core meandering in excitable media". Physical Review A 46, nr 8 (1.10.1992): 5264–67. http://dx.doi.org/10.1103/physreva.46.5264.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Gottwald, Georg A., i Lorenz Kramer. "A normal form for excitable media". Chaos: An Interdisciplinary Journal of Nonlinear Science 16, nr 1 (marzec 2006): 013122. http://dx.doi.org/10.1063/1.2168393.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Zykov, Vladimir S., i Eberhard Bodenschatz. "Wave Propagation in Inhomogeneous Excitable Media". Annual Review of Condensed Matter Physics 9, nr 1 (10.03.2018): 435–61. http://dx.doi.org/10.1146/annurev-conmatphys-033117-054300.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Gong, Xiyuan, Tetsuya Asai i Masato Motomura. "Excitable Reaction-Diffusion Media with Memristors". Journal of Signal Processing 16, nr 4 (2012): 283–86. http://dx.doi.org/10.2299/jsp.16.283.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Zykov, V. S. "Spiral wave initiation in excitable media". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 376, nr 2135 (12.11.2018): 20170379. http://dx.doi.org/10.1098/rsta.2017.0379.

Pełny tekst źródła
Streszczenie:
Spiral waves represent an important example of dissipative structures observed in many distributed systems in chemistry, biology and physics. By definition, excitable media occupy a stationary resting state in the absence of external perturbations. However, a perturbation exceeding a threshold results in the initiation of an excitation wave propagating through the medium. These waves, in contrast to acoustic and optical ones, disappear at the medium's boundary or after a mutual collision, and the medium returns to the resting state. Nevertheless, an initiation of a rotating spiral wave results in a self-sustained activity. Such activity unexpectedly appearing in cardiac or neuronal tissues usually destroys their dynamics which results in life-threatening diseases. In this context, an understanding of possible scenarios of spiral wave initiation is of great theoretical importance with many practical applications. This article is part of the theme issue ‘Dissipative structures in matter out of equilibrium: from chemistry, photonics and biology (part 2)’.
Style APA, Harvard, Vancouver, ISO itp.
24

ZHENG, ZHIGANG, i MICHAEL C. CROSS. "DEFECT-INDUCED PROPAGATION IN EXCITABLE MEDIA". International Journal of Bifurcation and Chaos 13, nr 10 (październik 2003): 3125–33. http://dx.doi.org/10.1142/s0218127403008491.

Pełny tekst źródła
Streszczenie:
Wave dynamics in the coupled FitzHugh–Nagumo oscillators with pacemaker defects is studied. It is found that with increasing the coupling strength, the lattice experiences a dynamical transition from a local wave to the global propagation. For large enough coupling, a transition from global wave propagation to the propagation failure can be observed. Noise-enhanced wave propagation in the propagation-failure regime is revealed.
Style APA, Harvard, Vancouver, ISO itp.
25

CHERNIHOVSKYI, ANTON, i KLAUS LEHNERTZ. "MEASURING SYNCHRONIZATION WITH NONLINEAR EXCITABLE MEDIA". International Journal of Bifurcation and Chaos 17, nr 10 (październik 2007): 3425–29. http://dx.doi.org/10.1142/s0218127407019159.

Pełny tekst źródła
Streszczenie:
We examine a possible utilization of the recently proposed method of signal-induced excitation waves in nonlinear excitable media as a means for the noise-tolerant detection of zero-lag phase synchronization in very noisy time series. We show that in cases, where a relatively strong noise contamination aggravates the direct application of phase-based measures of synchronization, it is nevertheless possible to detect synchronization phenomena.
Style APA, Harvard, Vancouver, ISO itp.
26

Cytrynbaum, Eric N., Vincent MacKay, Olivier Nahman-Lévesque, Matt Dobbs, Gil Bub, Alvin Shrier i Leon Glass. "Double-wave reentry in excitable media". Chaos: An Interdisciplinary Journal of Nonlinear Science 29, nr 7 (lipiec 2019): 073103. http://dx.doi.org/10.1063/1.5092982.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Muñuzuri, A. P., V. A. Davydov, M. Gómez-Gesteira, V. Pérez-Muñuzuri i V. Pérez-Villar. "Frequency-modulated autowaves in excitable media". Physical Review E 54, nr 6 (1.12.1996): R5921—R5924. http://dx.doi.org/10.1103/physreve.54.r5921.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Wellner, M., i A. M. Pertsov. "Generalized eikonal equation in excitable media". Physical Review E 55, nr 6 (1.06.1997): 7656–61. http://dx.doi.org/10.1103/physreve.55.7656.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Day, Charles. "Choreographing Wave Propagation in Excitable Media". Physics Today 55, nr 8 (sierpień 2002): 21. http://dx.doi.org/10.1063/1.1510271.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Puebla, Hector, Roland Martin, Jose Alvarez-Ramirez i Ricardo Aguilar-Lopez. "Controlling nonlinear waves in excitable media". Chaos, Solitons & Fractals 39, nr 2 (styczeń 2009): 971–80. http://dx.doi.org/10.1016/j.chaos.2007.04.009.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Maselko, Jerzy, i Kenneth Showalter. "Chemical waves in inhomogeneous excitable media". Physica D: Nonlinear Phenomena 49, nr 1-2 (kwiecień 1991): 21–32. http://dx.doi.org/10.1016/0167-2789(91)90189-g.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Starobin, Joseph, Yuri I. Zilberter i C. Frank Starmer. "Vulnerability in one-dimensional excitable media". Physica D: Nonlinear Phenomena 70, nr 4 (luty 1994): 321–41. http://dx.doi.org/10.1016/0167-2789(94)90069-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Zemskov, E. P., i A. Yu Loskutov. "Oscillatory traveling waves in excitable media". Journal of Experimental and Theoretical Physics 107, nr 2 (sierpień 2008): 344–49. http://dx.doi.org/10.1134/s1063776108080189.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Muir, A. "Theory of excitable media, vol. 6". Endeavour 12, nr 3 (styczeń 1988): 150–51. http://dx.doi.org/10.1016/0160-9327(88)90152-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

TRUSCOTT, J., i J. BRINDLEY. "Ocean plankton populations as excitable media". Bulletin of Mathematical Biology 56, nr 5 (wrzesień 1994): 981–98. http://dx.doi.org/10.1016/s0092-8240(05)80300-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Abraham, Ralph H. "Chaotic resonance patterns in excitable media". Journal of the Acoustical Society of America 88, S1 (listopad 1990): S162. http://dx.doi.org/10.1121/1.2028715.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Maucher, Fabian, i Paul Sutcliffe. "Rings on strings in excitable media". Journal of Physics A: Mathematical and Theoretical 51, nr 5 (5.01.2018): 055102. http://dx.doi.org/10.1088/1751-8121/aaa1ba.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Henze, C., E. Lugosi i A. T. Winfree. "Helical organizing centers in excitable media". Canadian Journal of Physics 68, nr 9 (1.09.1990): 683–710. http://dx.doi.org/10.1139/p90-100.

Pełny tekst źródła
Streszczenie:
Numerical simulations of three distinct models of excitable media (two-variable Oregonator, with both variables diffusing equally; and piecewise linear A and B kinetics, with only the propagator variable diffusing) are used here to investigate the dynamics of scroll filaments, with emphasis on the role of twist. In all three models, initially uncurved filaments uniformly twisted more than a threshold amount 'sproing' into radially expanding helices, some of which stabilize at finite radius. By monitoring the evolution of these helices with a differential geometry 'tool kit', we attempt to discern the presumed causal dependence of filament motion (resolved into velocities along the normal and binormal directions of the local Frenet frame) and rotor spin rate, on local filament geometry (curvature and torsion) and twist. Twist can reverse the direction of normal velocity from that seen in untwisted scroll rings; binormal velocity is either reversed (A kinetics), abolished (B kinetics), or engendered (Oregonator). In all cases twist increased spin rate, as predicted by theory. Our efforts to perceive a functional dependence of the dynamical variables on filament geometry and twist have met with limited success, but we believe our attempts have uncovered some useful methodology and exposed some pitfalls relevant to any such investigation. The existence and properties of a novel class of stable organizing centers, as well as the existence of a threshold of twist for their induction, should be of interest to theorists. In addition, our findings here based on models suggest new phenomena to look for in various excitable media, such as the Belousov–Zhabotinsky reagent or heart muscle.
Style APA, Harvard, Vancouver, ISO itp.
39

Jung, Peter, i Gottfried Mayer-Kress. "Spatiotemporal Stochastic Resonance in Excitable Media". Physical Review Letters 74, nr 11 (13.03.1995): 2130–33. http://dx.doi.org/10.1103/physrevlett.74.2130.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Gu, Guo-Feng, Hai-Ming Wei i Guo-Ning Tang. "Wave Optics in Discrete Excitable Media". Chinese Physics Letters 29, nr 5 (maj 2012): 054203. http://dx.doi.org/10.1088/0256-307x/29/5/054203.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Bär, M., I. G. Kevrekidis, H. H. Rotermund i G. Ertl. "Pattern formation in composite excitable media". Physical Review E 52, nr 6 (1.12.1995): R5739—R5742. http://dx.doi.org/10.1103/physreve.52.r5739.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Grindrod, Peter. "One-way blocks in excitable media". Chaos, Solitons & Fractals 5, nr 3-4 (marzec 1995): 555–65. http://dx.doi.org/10.1016/0960-0779(95)95764-i.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Bini, D., C. Cherubini i S. Filippi. "On vortices heating biological excitable media". Chaos, Solitons & Fractals 42, nr 4 (listopad 2009): 2057–66. http://dx.doi.org/10.1016/j.chaos.2009.03.164.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Truscott, J. E., i J. Brindley. "Ocean plankton populations as excitable media". Bulletin of Mathematical Biology 56, nr 5 (wrzesień 1994): 981–98. http://dx.doi.org/10.1007/bf02458277.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Berestycki, Henri, i Fran�ois Hamel. "Front propagation in periodic excitable media". Communications on Pure and Applied Mathematics 55, nr 8 (3.06.2002): 949–1032. http://dx.doi.org/10.1002/cpa.3022.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Davydov, Valerii A., V. S. Zykov i A. S. Mikhailov. "Kinematics of autowave structures in excitable media". Uspekhi Fizicheskih Nauk 161, nr 8 (1991): 45. http://dx.doi.org/10.3367/ufnr.0161.199108b.0045.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Chen, Yan-Yu, Hirokazu Ninomiya i Chang-Hong Wu. "Global Dynamics on One-Dimensional Excitable Media". SIAM Journal on Mathematical Analysis 53, nr 6 (styczeń 2021): 7081–112. http://dx.doi.org/10.1137/20m1343014.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Zhang, Liang, i Andrew Adamatzky. "Towards Arithmetical Chips in Sub-Excitable Media". International Journal of Nanotechnology and Molecular Computation 1, nr 3 (lipiec 2009): 63–81. http://dx.doi.org/10.4018/jnmc.2009070105.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Kessler, David A., Herbert Levine i William N. Reynolds. "Spiral core in singly diffusive excitable media". Physical Review Letters 68, nr 3 (20.01.1992): 401–4. http://dx.doi.org/10.1103/physrevlett.68.401.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Dockery, J. D., i J. P. Keener. "Diffusive Effects on Dispersion in Excitable Media". SIAM Journal on Applied Mathematics 49, nr 2 (kwiecień 1989): 539–66. http://dx.doi.org/10.1137/0149031.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii