Artykuły w czasopismach na temat „Eukaryotic initiation factor eIF4GI”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Eukaryotic initiation factor eIF4GI”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Gradi, Alessandra, Hiroaki Imataka, Yuri V. Svitkin, Eran Rom, Brian Raught, Shigenobu Morino i Nahum Sonenberg. "A Novel Functional Human Eukaryotic Translation Initiation Factor 4G". Molecular and Cellular Biology 18, nr 1 (1.01.1998): 334–42. http://dx.doi.org/10.1128/mcb.18.1.334.
Pełny tekst źródłaRobert, Francis, Regina Cencic, Renying Cai, T. Martin Schmeing i Jerry Pelletier. "RNA-tethering assay and eIF4G:eIF4A obligate dimer design uncovers multiple eIF4F functional complexes". Nucleic Acids Research 48, nr 15 (4.08.2020): 8562–75. http://dx.doi.org/10.1093/nar/gkaa646.
Pełny tekst źródłaColdwell, Mark J., Ulrike Sack, Joanne L. Cowan, Rachel M. Barrett, Markete Vlasak, Keiley Sivakumaran i Simon J. Morley. "Multiple isoforms of the translation initiation factor eIF4GII are generated via use of alternative promoters, splice sites and a non-canonical initiation codon". Biochemical Journal 448, nr 1 (18.10.2012): 1–11. http://dx.doi.org/10.1042/bj20111765.
Pełny tekst źródłaYanagiya, Akiko, Yuri V. Svitkin, Shoichiro Shibata, Satoshi Mikami, Hiroaki Imataka i Nahum Sonenberg. "Requirement of RNA Binding of Mammalian Eukaryotic Translation Initiation Factor 4GI (eIF4GI) for Efficient Interaction of eIF4E with the mRNA Cap". Molecular and Cellular Biology 29, nr 6 (29.12.2008): 1661–69. http://dx.doi.org/10.1128/mcb.01187-08.
Pełny tekst źródłaCaron, Sandrine, Martine Charon, Elisabeth Cramer, Nahum Sonenberg i Isabelle Dusanter-Fourt. "Selective Modification of Eukaryotic Initiation Factor 4F (eIF4F) at the Onset of Cell Differentiation: Recruitment of eIF4GII and Long-Lasting Phosphorylation of eIF4E". Molecular and Cellular Biology 24, nr 11 (1.06.2004): 4920–28. http://dx.doi.org/10.1128/mcb.24.11.4920-4928.2004.
Pełny tekst źródłaÁlvarez, Enrique, Luis Menéndez-Arias i Luis Carrasco. "The Eukaryotic Translation Initiation Factor 4GI Is Cleaved by Different Retroviral Proteases". Journal of Virology 77, nr 23 (1.12.2003): 12392–400. http://dx.doi.org/10.1128/jvi.77.23.12392-12400.2003.
Pełny tekst źródłaColdwell, Mark J., i Simon J. Morley. "Specific Isoforms of Translation Initiation Factor 4GI Show Differences in Translational Activity". Molecular and Cellular Biology 26, nr 22 (18.09.2006): 8448–60. http://dx.doi.org/10.1128/mcb.01248-06.
Pełny tekst źródłaPatel, Krishnaben, Grishma K. Shah, Sai Shilpa Kommaraju i Woon-Kai Low. "Investigation of the conserved glutamate immediately following the DEAD box in eukaryotic translation initiation factor 4AI". Biochemistry and Cell Biology 92, nr 1 (luty 2014): 33–42. http://dx.doi.org/10.1139/bcb-2013-0076.
Pełny tekst źródłaNeff, Carrie L., i Alan B. Sachs. "Eukaryotic Translation Initiation Factors 4G and 4A from Saccharomyces cerevisiae Interact Physically and Functionally". Molecular and Cellular Biology 19, nr 8 (1.08.1999): 5557–64. http://dx.doi.org/10.1128/mcb.19.8.5557.
Pełny tekst źródłaLi, Qiyu, Hiroaki Imataka, Shigenobu Morino, George W. Rogers, Nancy J. Richter-Cook, William C. Merrick i Nahum Sonenberg. "Eukaryotic Translation Initiation Factor 4AIII (eIF4AIII) Is Functionally Distinct from eIF4AI and eIF4AII". Molecular and Cellular Biology 19, nr 11 (1.11.1999): 7336–46. http://dx.doi.org/10.1128/mcb.19.11.7336.
Pełny tekst źródłaSvitkin, Yuri V., Alessandra Gradi, Hiroaki Imataka, Shigenobu Morino i Nahum Sonenberg. "Eukaryotic Initiation Factor 4GII (eIF4GII), but Not eIF4GI, Cleavage Correlates with Inhibition of Host Cell Protein Synthesis after Human Rhinovirus Infection". Journal of Virology 73, nr 4 (1.04.1999): 3467–72. http://dx.doi.org/10.1128/jvi.73.4.3467-3472.1999.
Pełny tekst źródłaLomakin, Ivan B., Christopher U. T. Hellen i Tatyana V. Pestova. "Physical Association of Eukaryotic Initiation Factor 4G (eIF4G) with eIF4A Strongly Enhances Binding of eIF4G to the Internal Ribosomal Entry Site of Encephalomyocarditis Virus and Is Required for Internal Initiation of Translation". Molecular and Cellular Biology 20, nr 16 (15.08.2000): 6019–29. http://dx.doi.org/10.1128/mcb.20.16.6019-6029.2000.
Pełny tekst źródłaAragón, Tomás, Susana de la Luna, Isabel Novoa, Luis Carrasco, Juan Ortín i Amelia Nieto. "Eukaryotic Translation Initiation Factor 4GI Is a Cellular Target for NS1 Protein, a Translational Activator of Influenza Virus". Molecular and Cellular Biology 20, nr 17 (1.09.2000): 6259–68. http://dx.doi.org/10.1128/mcb.20.17.6259-6268.2000.
Pełny tekst źródłaWalsh, Derek, Carolina Arias, Cesar Perez, David Halladin, Martin Escandon, Takeshi Ueda, Rie Watanabe-Fukunaga, Rikiro Fukunaga i Ian Mohr. "Eukaryotic Translation Initiation Factor 4F Architectural Alterations Accompany Translation Initiation Factor Redistribution in Poxvirus-Infected Cells". Molecular and Cellular Biology 28, nr 8 (4.02.2008): 2648–58. http://dx.doi.org/10.1128/mcb.01631-07.
Pełny tekst źródłaPestova, T. V., I. N. Shatsky i C. U. Hellen. "Functional dissection of eukaryotic initiation factor 4F: the 4A subunit and the central domain of the 4G subunit are sufficient to mediate internal entry of 43S preinitiation complexes." Molecular and Cellular Biology 16, nr 12 (grudzień 1996): 6870–78. http://dx.doi.org/10.1128/mcb.16.12.6870.
Pełny tekst źródłaByrd, Marshall P., Miguel Zamora i Richard E. Lloyd. "Generation of Multiple Isoforms of Eukaryotic Translation Initiation Factor 4GI by Use of Alternate Translation Initiation Codons". Molecular and Cellular Biology 22, nr 13 (1.07.2002): 4499–511. http://dx.doi.org/10.1128/mcb.22.13.4499-4511.2002.
Pełny tekst źródłaSen, Neelam Dabas, Fujun Zhou, Michael S. Harris, Nicholas T. Ingolia i Alan G. Hinnebusch. "eIF4B stimulates translation of long mRNAs with structured 5′ UTRs and low closed-loop potential but weak dependence on eIF4G". Proceedings of the National Academy of Sciences 113, nr 38 (6.09.2016): 10464–72. http://dx.doi.org/10.1073/pnas.1612398113.
Pełny tekst źródłaMorino, Shigenobu, Hiroaki Imataka, Yuri V. Svitkin, Tatyana V. Pestova i Nahum Sonenberg. "Eukaryotic Translation Initiation Factor 4E (eIF4E) Binding Site and the Middle One-Third of eIF4GI Constitute the Core Domain for Cap-Dependent Translation, and the C-Terminal One-Third Functions as a Modulatory Region". Molecular and Cellular Biology 20, nr 2 (15.01.2000): 468–77. http://dx.doi.org/10.1128/mcb.20.2.468-477.2000.
Pełny tekst źródłaKuyumcu-Martinez, N. Muge, Marc E. Van Eden, Patrick Younan i Richard E. Lloyd. "Cleavage of Poly(A)-Binding Protein by Poliovirus 3C Protease Inhibits Host Cell Translation: a Novel Mechanism for Host Translation Shutoff". Molecular and Cellular Biology 24, nr 4 (15.02.2004): 1779–90. http://dx.doi.org/10.1128/mcb.24.4.1779-1790.2004.
Pełny tekst źródłaGradi, Alessandra, Yuri V. Svitkin, Wolfgang Sommergruber, Hiroaki Imataka, Shigenobu Morino, Tim Skern i Nahum Sonenberg. "Human Rhinovirus 2A Proteinase Cleavage Sites in Eukaryotic Initiation Factors (eIF) 4GI and eIF4GII Are Different". Journal of Virology 77, nr 8 (15.04.2003): 5026–29. http://dx.doi.org/10.1128/jvi.77.8.5026-5029.2003.
Pełny tekst źródłaYang, Hsin-Sheng, Aaron P. Jansen, Anton A. Komar, Xiaojing Zheng, William C. Merrick, Sylvain Costes, Stephen J. Lockett, Nahum Sonenberg i Nancy H. Colburn. "The Transformation Suppressor Pdcd4 Is a Novel Eukaryotic Translation Initiation Factor 4A Binding Protein That Inhibits Translation". Molecular and Cellular Biology 23, nr 1 (1.01.2003): 26–37. http://dx.doi.org/10.1128/mcb.23.1.26-37.2003.
Pełny tekst źródłaAlard, Amandine, Bertrand Fabre, Rodica Anesia, Catherine Marboeuf, Philippe Pierre, Christiane Susini, Corinne Bousquet i Stéphane Pyronnet. "NAD(P)H Quinone-Oxydoreductase 1 Protects Eukaryotic Translation Initiation Factor 4GI from Degradation by the Proteasome". Molecular and Cellular Biology 30, nr 4 (22.12.2009): 1097–105. http://dx.doi.org/10.1128/mcb.00868-09.
Pełny tekst źródłaImataka, H., i N. Sonenberg. "Human eukaryotic translation initiation factor 4G (eIF4G) possesses two separate and independent binding sites for eIF4A." Molecular and Cellular Biology 17, nr 12 (grudzień 1997): 6940–47. http://dx.doi.org/10.1128/mcb.17.12.6940.
Pełny tekst źródłaMartínez-Alonso, Emma, Natalia Guerra-Pérez, Alejandro Escobar-Peso, Lorena Peracho, Rocío Vera-Lechuga, Antonio Cruz-Culebras, Jaime Masjuan i Alberto Alcázar. "Phosphorylation of Eukaryotic Initiation Factor 4G1 (eIF4G1) at Ser1147 Is Specific for eIF4G1 Bound to eIF4E in Delayed Neuronal Death after Ischemia". International Journal of Molecular Sciences 23, nr 3 (6.02.2022): 1830. http://dx.doi.org/10.3390/ijms23031830.
Pełny tekst źródłaKempf, Brian J., i David J. Barton. "Poliovirus 2APro Increases Viral mRNA and Polysome Stability Coordinately in Time with Cleavage of eIF4G". Journal of Virology 82, nr 12 (9.04.2008): 5847–59. http://dx.doi.org/10.1128/jvi.01514-07.
Pełny tekst źródłaGlaser, Walter, Andrea Triendl i Tim Skern. "The Processing of eIF4GI by Human Rhinovirus Type 2 2Apro: Relationship to Self-Cleavage and Role of Zinc". Journal of Virology 77, nr 8 (15.04.2003): 5021–25. http://dx.doi.org/10.1128/jvi.77.8.5021-5025.2003.
Pełny tekst źródłaHaizel, Solomon A., Usha Bhardwaj, Ruben L. Gonzalez, Somdeb Mitra i Dixie J. Goss. "5′-UTR recruitment of the translation initiation factor eIF4GI or DAP5 drives cap-independent translation of a subset of human mRNAs". Journal of Biological Chemistry 295, nr 33 (22.06.2020): 11693–706. http://dx.doi.org/10.1074/jbc.ra120.013678.
Pełny tekst źródłaMontero, Hilda, Carlos F. Arias i Susana Lopez. "Rotavirus Nonstructural Protein NSP3 Is Not Required for Viral Protein Synthesis". Journal of Virology 80, nr 18 (15.09.2006): 9031–38. http://dx.doi.org/10.1128/jvi.00437-06.
Pełny tekst źródłaWillcocks, Margaret M., Michael J. Carter i Lisa O. Roberts. "Cleavage of eukaryotic initiation factor eIF4G and inhibition of host-cell protein synthesis during feline calicivirus infection". Journal of General Virology 85, nr 5 (1.05.2004): 1125–30. http://dx.doi.org/10.1099/vir.0.19564-0.
Pełny tekst źródłaGradi, Alessandra, Nicole Foeger, Rebecca Strong, Yuri V. Svitkin, Nahum Sonenberg, Tim Skern i Graham J. Belsham. "Cleavage of Eukaryotic Translation Initiation Factor 4GII within Foot-and-Mouth Disease Virus-Infected Cells: Identification of the L-Protease Cleavage Site In Vitro". Journal of Virology 78, nr 7 (1.04.2004): 3271–78. http://dx.doi.org/10.1128/jvi.78.7.3271-3278.2004.
Pełny tekst źródłaLi, Lei, i Ching C. Wang. "Identification in the Ancient Protist Giardia lamblia of Two Eukaryotic Translation Initiation Factor 4E Homologues with Distinctive Functions". Eukaryotic Cell 4, nr 5 (maj 2005): 948–59. http://dx.doi.org/10.1128/ec.4.5.948-959.2005.
Pełny tekst źródłaZamora, Miguel, Wilfred E. Marissen i Richard E. Lloyd. "Multiple eIF4GI-Specific Protease Activities Present in Uninfected and Poliovirus-Infected Cells". Journal of Virology 76, nr 1 (1.01.2002): 165–77. http://dx.doi.org/10.1128/jvi.76.1.165-177.2002.
Pełny tekst źródłaKamenska, Anastasiia, Clare Simpson i Nancy Standart. "eIF4E-binding proteins: new factors, new locations, new roles". Biochemical Society Transactions 42, nr 4 (1.08.2014): 1238–45. http://dx.doi.org/10.1042/bst20140063.
Pełny tekst źródłaDOMINGUEZ, Diana, Elisabeth KISLIG, Michael ALTMANN i Hans TRACHSEL. "Structural and functional similarities between the central eukaryotic initiation factor (eIF)4A-binding domain of mammalian eIF4G and the eIF4A-binding domain of yeast eIF4G". Biochemical Journal 355, nr 1 (26.02.2001): 223–30. http://dx.doi.org/10.1042/bj3550223.
Pełny tekst źródłaMokas, Sophie, John R. Mills, Cristina Garreau, Marie-Josée Fournier, Francis Robert, Prabhat Arya, Randal J. Kaufman, Jerry Pelletier i Rachid Mazroui. "Uncoupling Stress Granule Assembly and Translation Initiation Inhibition". Molecular Biology of the Cell 20, nr 11 (czerwiec 2009): 2673–83. http://dx.doi.org/10.1091/mbc.e08-10-1061.
Pełny tekst źródłaGallie, Daniel R. "Cap-Independent Translation Conferred by the 5′ Leader of Tobacco Etch Virus Is Eukaryotic Initiation Factor 4G Dependent". Journal of Virology 75, nr 24 (15.12.2001): 12141–52. http://dx.doi.org/10.1128/jvi.75.24.12141-12152.2001.
Pełny tekst źródłaKommaraju, Sai Shilpa, Julieta Aulicino, Shruthi Gobbooru, Jing Li, Mingzhao Zhu, Daniel Romo i Woon-Kai Low. "Investigation of the mechanism of action of a potent pateamine A analog, des-methyl, des-amino pateamine A (DMDAPatA)". Biochemistry and Cell Biology 98, nr 4 (sierpień 2020): 502–10. http://dx.doi.org/10.1139/bcb-2019-0307.
Pełny tekst źródłaPetegnief, Valérie, Míriam Font-Nieves, M. Elena Martín, Matilde Salinas i Anna M. Planas. "Nitric oxide mediates NMDA-induced persistent inhibition of protein synthesis through dephosphorylation of eukaryotic initiation factor 4E-binding protein 1 and eukaryotic initiation factor 4G proteolysis". Biochemical Journal 411, nr 3 (14.04.2008): 667–77. http://dx.doi.org/10.1042/bj20071060.
Pełny tekst źródłavan Breukelen, Frank, Nahum Sonenberg i Sandra L. Martin. "Seasonal and state-dependent changes of eIF4E and 4E-BP1 during mammalian hibernation: implications for the control of translation during torpor". American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 287, nr 2 (sierpień 2004): R349—R353. http://dx.doi.org/10.1152/ajpregu.00728.2003.
Pełny tekst źródłaSvitkin, Yuri V., Barbara Herdy, Mauro Costa-Mattioli, Anne-Claude Gingras, Brian Raught i Nahum Sonenberg. "Eukaryotic Translation Initiation Factor 4EAvailability Controls the Switch between Cap-Dependent andInternal Ribosomal Entry Site-MediatedTranslation". Molecular and Cellular Biology 25, nr 23 (1.12.2005): 10556–65. http://dx.doi.org/10.1128/mcb.25.23.10556-10565.2005.
Pełny tekst źródłaChen, Sunrui, Cui Feng, Yan Fang, Xinying Zhou, Lei Xu, Wenshi Wang, Xiangdong Kong, Maikel P. Peppelenbosch, Qiuwei Pan i Yuebang Yin. "The Eukaryotic Translation Initiation Factor 4F Complex Restricts Rotavirus Infection via Regulating the Expression of IRF1 and IRF7". International Journal of Molecular Sciences 20, nr 7 (29.03.2019): 1580. http://dx.doi.org/10.3390/ijms20071580.
Pełny tekst źródłaJagus, Rosemary, Tsvetan R. Bachvaroff, Bhavesh Joshi i Allen R. Place. "Diversity of Eukaryotic Translational Initiation Factor eIF4E in Protists". Comparative and Functional Genomics 2012 (2012): 1–21. http://dx.doi.org/10.1155/2012/134839.
Pełny tekst źródłaEl-Kadi, Samer W., Ying Chen, Sydney R. McCauley, Kacie A. Seymour, Sally E. Johnson i Robert P. Rhoads. "Decreased abundance of eIF4F subunits predisposes low birth weight neonatal pigs to reduced muscle hypertrophy". Journal of Applied Physiology 125, nr 4 (1.10.2018): 1171–82. http://dx.doi.org/10.1152/japplphysiol.00704.2017.
Pełny tekst źródłaSkofler, Christina, Florian Kleinegger, Stefanie Krassnig, Anna Maria Birkl-Toeglhofer, Georg Singer, Holger Till, Martin Benesch i in. "Eukaryotic Translation Initiation Factor 4AI: A Potential Novel Target in Neuroblastoma". Cells 10, nr 2 (2.02.2021): 301. http://dx.doi.org/10.3390/cells10020301.
Pełny tekst źródłaLu, Wei-Ting, Anna Wilczynska, Ewan Smith i Martin Bushell. "The diverse roles of the eIF4A family: you are the company you keep". Biochemical Society Transactions 42, nr 1 (23.01.2014): 166–72. http://dx.doi.org/10.1042/bst20130161.
Pełny tekst źródłaCosentino, Gregory P., Tobias Schmelzle, Ashkan Haghighat, Stephen B. Helliwell, Michael N. Hall i Nahum Sonenberg. "Eap1p, a Novel Eukaryotic Translation Initiation Factor 4E-Associated Protein in Saccharomyces cerevisiae". Molecular and Cellular Biology 20, nr 13 (1.07.2000): 4604–13. http://dx.doi.org/10.1128/mcb.20.13.4604-4613.2000.
Pełny tekst źródłaGoldstaub, Dan, Alessandra Gradi, Zippi Bercovitch, Zehava Grosmann, Yaron Nophar, Sylvie Luria, Nahum Sonenberg i Chaim Kahana. "Poliovirus 2A Protease Induces Apoptotic Cell Death". Molecular and Cellular Biology 20, nr 4 (15.02.2000): 1271–77. http://dx.doi.org/10.1128/mcb.20.4.1271-1277.2000.
Pełny tekst źródłaLachance, Pascal E. D., Mathieu Miron, Brian Raught, Nahum Sonenberg i Paul Lasko. "Phosphorylation of Eukaryotic Translation Initiation Factor 4E Is Critical for Growth". Molecular and Cellular Biology 22, nr 6 (15.03.2002): 1656–63. http://dx.doi.org/10.1128/mcb.22.6.1656-1663.2002.
Pełny tekst źródłaJaiswal, Praveen K., Sweaty Koul, Saikolappan Sankaralingam i Hari K. Koul. "Abstract 396: Therapeutic targeting of eukaryotic translation initiation factor 4 gamma 1 (EIF4G1) in enzalutamide resistant (ENZR) prostate cancer". Cancer Research 82, nr 12_Supplement (15.06.2022): 396. http://dx.doi.org/10.1158/1538-7445.am2022-396.
Pełny tekst źródłaSugiyama, Hayami, Kazutoshi Takahashi, Takuya Yamamoto, Mio Iwasaki, Megumi Narita, Masahiro Nakamura, Tim A. Rand, Masato Nakagawa, Akira Watanabe i Shinya Yamanaka. "Nat1 promotes translation of specific proteins that induce differentiation of mouse embryonic stem cells". Proceedings of the National Academy of Sciences 114, nr 2 (21.12.2016): 340–45. http://dx.doi.org/10.1073/pnas.1617234114.
Pełny tekst źródła