Gotowa bibliografia na temat „Eukaryotic gene regulation”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Eukaryotic gene regulation”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Eukaryotic gene regulation"
Chin, Jason W. "Eukaryotic gene regulation". Chemistry & Biology 7, nr 1 (styczeń 2000): R26. http://dx.doi.org/10.1016/s1074-5521(00)00071-5.
Pełny tekst źródłaLindahl, G. "Gene Regulation: A Eukaryotic Perspective". International Journal of Biochemistry & Cell Biology 35, nr 1 (styczeń 2003): 111–12. http://dx.doi.org/10.1016/s1357-2725(02)00174-7.
Pełny tekst źródłaMarsden, P. "Gene Regulation. A Eukaryotic Perspective". Biochemical Education 19, nr 1 (styczeń 1991): 44–45. http://dx.doi.org/10.1016/0307-4412(91)90163-3.
Pełny tekst źródłaGoodbourn, Stephen. "Gene regulation: A eukaryotic perspective". Trends in Genetics 7, nr 10 (październik 1991): 340. http://dx.doi.org/10.1016/0168-9525(91)90426-q.
Pełny tekst źródłaMellor, Jane. "Gene regulation: A eukaryotic perspective". Trends in Biochemical Sciences 16 (styczeń 1991): 482–83. http://dx.doi.org/10.1016/0968-0004(91)90186-y.
Pełny tekst źródłaBonifer, Constanze. "Developmental regulation of eukaryotic gene loci". Trends in Genetics 16, nr 7 (lipiec 2000): 310–15. http://dx.doi.org/10.1016/s0168-9525(00)02029-1.
Pełny tekst źródłaNakayama, Koh, i Naoyuki Kataoka. "Regulation of Gene Expression under Hypoxic Conditions". International Journal of Molecular Sciences 20, nr 13 (3.07.2019): 3278. http://dx.doi.org/10.3390/ijms20133278.
Pełny tekst źródłaChen, Lin. "Combinatorial gene regulation by eukaryotic transcription factors". Current Opinion in Structural Biology 9, nr 1 (luty 1999): 48–55. http://dx.doi.org/10.1016/s0959-440x(99)80007-4.
Pełny tekst źródłaGagneux, P. "Gene Regulation: A Eukaryotic Perspective, 4th Edition". Journal of Heredity 94, nr 6 (1.11.2003): 528–29. http://dx.doi.org/10.1093/jhered/esg102.
Pełny tekst źródłaEmery-Corbin, Samantha J., Joshua J. Hamey, Brendan R. E. Ansell, Balu Balan, Swapnil Tichkule, Andreas J. Stroehlein, Crystal Cooper i in. "Eukaryote-Conserved Methylarginine Is Absent in Diplomonads and Functionally Compensated in Giardia". Molecular Biology and Evolution 37, nr 12 (23.07.2020): 3525–49. http://dx.doi.org/10.1093/molbev/msaa186.
Pełny tekst źródłaRozprawy doktorskie na temat "Eukaryotic gene regulation"
Kielbasa, Szymon M. "Bioinformatics of eukaryotic gene regulation". [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=982693192.
Pełny tekst źródłaKiełbasa, Szymon M. "Bioinformatics of eukaryotic gene regulation". Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2006. http://dx.doi.org/10.18452/15562.
Pełny tekst źródłaUnderstanding the mechanisms which control gene expression is one of the fundamental problems of molecular biology. Detailed experimental studies of regulation are laborious due to the complex and combinatorial nature of interactions among involved molecules. Therefore, computational techniques are used to suggest candidate mechanisms for further investigation. This thesis presents three methods improving the predictions of regulation of gene transcription. The first approach finds binding sites recognized by a transcription factor based on statistical over-representation of short motifs in a set of promoter sequences. A succesful application of this method to several gene families of yeast is shown. More advanced techniques are needed for the analysis of gene regulation in higher eukaryotes. Hundreds of profiles recognized by transcription factors are provided by libraries. Dependencies between them result in multiple predictions of the same binding sites which need later to be filtered out. The second method presented here offers a way to reduce the number of profiles by identifying similarities between them. Still, the complex nature of interaction between transcription factors makes reliable predictions of binding sites difficult. Exploiting independent sources of information reduces the false predictions rate. The third method proposes a novel approach associating gene annotations with regulation of multiple transcription factors and binding sites recognized by them. The utility of the method is demonstrated on several well-known sets of transcription factors. RNA interference provides a way of efficient down-regulation of gene expression. Difficulties in predicting efficient siRNA sequences motivated the development of a library containing siRNA sequences and related experimental details described in the literature. This library, presented in the last chapter, is publicly available at http://www.human-sirna-database.net
Webb, Sarah. "Structural analysis of eukaryotic gene regulation". Thesis, The University of Sydney, 2014. http://hdl.handle.net/2123/13487.
Pełny tekst źródłaDickinson, P. "Fibronectin gene expression in higher eukaryotic cells". Thesis, University of Manchester, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.378322.
Pełny tekst źródłaSpies, Noah (Noah Walter Benjamin). "Cross-regulation and interaction between eukaryotic gene regulatory processes". Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/72637.
Pełny tekst źródłaThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student submitted PDF version of thesis.
Includes bibliographical references.
Regulation of genes is fundamental to all living processes and can be exerted at many sequential steps. We studied several eukaryotic gene regulatory mechanisms with an emphasis on understanding the interplay between regulatory processes on a genome-wide scale. Gene splicing involves the joining of exonic RNA stretches from within a precursor messenger RNA (mRNA). Splicing typically occurs co-transcriptionally as the pre-mRNA is being produced from the DNA. We explored the relationship between the chromatin state of the gene-encoding DNA and the splicing machinery. We found a marked enrichment for nucleosomes at exonic DNA in human T cells, as compared to surrounding introns, an effect mostly explained by the biased nucleotide content of exons. The use of nucleosome positioning information improved splicing simulation models, suggesting nucleosome positioning may help determine cellular splicing patterns. Additionally, we found several histone marks enriched or depleted at exons compared to the background nucleosome levels, indicative of a histone code for splicing. These results connect the chromatin regulation and mRNA splicing processes in a genome-wide fashion. Another pre-mRNA processing step is cleavage and polyadenylation, which determines the 30 end of the mature mRNA. We found that 3P-Seq was able to quantify the levels of 30 end isoforms, in addition to the method's previous use for annotating mRNA 30 ends. Using 3P-Seq and a transcriptional shutoff experiment in mouse fibroblasts, we investigated the e?effect of nuclear alternative 30 end formation on mRNA stability, typically regulated in the cytoplasm. In genes with multiple, tandem 30 untranslated regions (30 UTRs) produced by alternative cleavage and polyadenylation, we found the shorter UTRs were significantly more stable in general than the longer isoforms. This di?difference was in part explained by the loss of cis-regulatory motifs, such as microRNA targets and PUF-binding sites, between the proximal and distal isoforms. Finally, we characterized the small interfering RNAs (siRNAs) produced from heterochromatic, silenced genomic regions in fission yeast. We observed a considerable bias for siRNAs with a 5' U, and used this bias to infer patterns of siRNA biogenesis. Furthermore, comparisons with between wild-type and the Cid14 non-canonical poly(A) polymerase mutant demonstrated that the exosome, the nuclear surveillance and processing complex, is required for RNA homeostasis. In the absence of a fully functional exosome complex, siRNAs are produced to normal exosome targets, including ribosomal and transfer RNAs, indicating these processes may compete for substrates and underscoring the interconnectedness of gene regulatory systems.
by Noah Spies.
Ph.D.
Sen, Rwik. "REGULATION OF EUKARYOTIC TRANSCRIPTIONAL ELONGATION AND ASSOCIATED DNA REPAIR". OpenSIUC, 2016. https://opensiuc.lib.siu.edu/dissertations/1205.
Pełny tekst źródłaHelder, Stephanie. "Investigations into RNA-binding proteins involved in eukaryotic gene regulation". Thesis, The University of Sydney, 2017. http://hdl.handle.net/2123/18597.
Pełny tekst źródłaTo, Tsz-Leung. "Transcriptional bursting in eukaryotic gene regulation : molecular basis and functional consequences". Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/62062.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references.
Transcription of mRNA appears to occur in random, intermittent bursts in a large variety of organisms. The statistics of mRNA expression can be described by two parameters: the frequency at which bursts occur (burst frequency) and the average number of mRNA produced within each burst (burst size). The mean steady-state abundance of mRNA is the product of the burst size and burst frequency. Although the experimental evidence for bursty gene transcription is abundant, little is known about its origins and consequences. We utilize single-molecule mRNA imaging and simple stochastic kinetic models to probe and understand both the mechanistic details and functional responses of transcriptional bursting in budding yeast. At the molecular level, we show that gene-specific activators can control both burst size and burst frequency by differentially utilizing kinetically distinct promoter elements. We also recognize the importance of activator residence time and nucleosome positioning on bursting. This investigation exemplifies how we can exploit spontaneous fluctuations in gene expression to uncover the molecular mechanisms and kinetic pathways of transcriptional regulation. At the network level, we demonstrate the important phenotypic consequences of transcriptional bursting by showing how noise itself can generate a bimodal, all-or-none gene expression profile that switches spontaneously between the low and high expression states in a transcriptional positive-feedback loop. Such bimodality is a hallmark in decision-making circuitry within metabolic, developmental, and synthetic gene regulatory networks. Importantly, we prove that the bimodal responses observed in our system are not due to deterministic bistability, which is an often-stated necessary condition for allor- none responses in positive-feedback loops. By clarifying a common misconception, this investigation provides unique biological insights into the molecular components, pathways and mechanisms controlling a measured phenotype.
by Tsz-Leung To.
Ph.D.
Ferdoush, Jannatul. "Regulation of nuclear phase of eukaryotic gene expression by ubiquitin-proteasome system". OpenSIUC, 2019. https://opensiuc.lib.siu.edu/dissertations/1751.
Pełny tekst źródłaZheng, Qun. "Analysis of the Caenorhabditis elegans rpc-1 gene". Diss., Columbia, Mo. : University of Missouri-Columbia, 2005. http://hdl.handle.net/10355/4129.
Pełny tekst źródłaThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file viewed on (January 25, 2007) Vita. Includes bibliographical references.
Książki na temat "Eukaryotic gene regulation"
Stephen, Goodbourn, red. Eukaryotic gene transcription. Oxford: IRL Press at Oxford University Press, 1996.
Znajdź pełny tekst źródłaLatchman, David S. Gene regulation: A eukaryotic perspective. London: Unwin Hyman, 1990.
Znajdź pełny tekst źródłaGene regulation: A eukaryotic perspective. Wyd. 2. London: Chapman & Hall, 1995.
Znajdź pełny tekst źródłaGene regulation: A eukaryotic perspective. Wyd. 4. Cheltenham: Nelson Thornes, 2002.
Znajdź pełny tekst źródłaGene regulation: A eukaryotic perspective. Wyd. 5. New York: Taylor & Francis, 2006.
Znajdź pełny tekst źródłaWingender, Edgar. Gene regulation in eukaryotes. Weinheim: VCH, 1993.
Znajdź pełny tekst źródłaR, Kinghorn James, red. Gene structure in eukaryotic microbes. Oxford: Published for the Society for General Microbiology by IRL Press, 1987.
Znajdź pełny tekst źródłaLawrence, Privalsky Martin, red. Transcriptional corepressors: Mediators of eukaryotic gene repression. Berlin: Springer, 2001.
Znajdź pełny tekst źródłaWajapeyee, Narendra, i Romi Gupta, red. Eukaryotic Transcriptional and Post-Transcriptional Gene Expression Regulation. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6518-2.
Pełny tekst źródłaA, Broda P. M., Oliver S. G. 1949- i Sims P, red. The eukaryotic genome: Organisation and regulation. Cambridge: Cambridge University Press, 1993.
Znajdź pełny tekst źródłaCzęści książek na temat "Eukaryotic gene regulation"
Gupta, Naba K., Mir F. Ahmad, Debopam Chakrabarti i Nargis Nasrin. "Roles of Eukaryotic Initiation Factor 2 and Eukaryotic Initiation Factor 2 Ancillary Protein Factors in Eukaryotic Protein Synthesis Initiation". W Translational Regulation of Gene Expression, 287–334. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-5365-2_14.
Pełny tekst źródłaGehrke, Lee. "Differential Translation of Eukaryotic Messenger RNAs". W Translational Regulation of Gene Expression, 367–78. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-5365-2_16.
Pełny tekst źródłaDurairaj, Geetha, Shivani Malik i Sukesh R. Bhaumik. "Eukaryotic Gene Expression by RNA Polymerase II". W Gene Regulation, Epigenetics and Hormone Signaling, 1–28. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527697274.ch1.
Pełny tekst źródłaJacobson, K. Bruce. "Translational and Nontranslational Mechanisms of Regulation by Eukaryotic Suppressor Mutants". W Translational Regulation of Gene Expression, 379–96. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-5365-2_17.
Pełny tekst źródłaKaspar, Roger L., David R. Morris i Michael W. White. "Control of Ribosomal Protein Synthesis in Eukaryotic Cells". W Translational Regulation of Gene Expression 2, 335–48. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-2894-4_16.
Pełny tekst źródłaLaz, Thomas, John Clements i Fred Sherman. "The Role of Messenger RNA Sequences and Structures in Eukaryotic Translation". W Translational Regulation of Gene Expression, 413–29. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-5365-2_19.
Pełny tekst źródłaEdery, Isaac, Jerry Pelletier i Nahum Sonenberg. "Role of Eukaryotic Messenger RNA Cap-Binding Protein in Regulation of Translation". W Translational Regulation of Gene Expression, 335–66. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-5365-2_15.
Pełny tekst źródłaWalthers, Don, Alvin Go i Linda J. Kenney. "Regulation of Porin Gene Expression by the Two-Component Regulatory System EnvZ/OmpR". W Bacterial and Eukaryotic Porins, 1–24. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527603875.ch1.
Pełny tekst źródłaPeltz, Stuart W., i Allan Jacobson. "Regulation of Eukaryotic Gene Expression at the Level of mRNA Stability: Emergence of General Principles". W Post-transcriptional Control of Gene Expression, 1–7. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-60929-9_1.
Pełny tekst źródłaVarani, Gabriele, Peter Bayer, Paul Cole, Andres Ramos i Luca Varani. "RNA Structure and RNA-Protein Recognition During Regulation of Eukaryotic Gene Expression". W RNA Biochemistry and Biotechnology, 195–216. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4485-8_15.
Pełny tekst źródłaStreszczenia konferencji na temat "Eukaryotic gene regulation"
Pannekok, H., A. J. Van Zonneveid, C. J. M. de vries, M. E. MacDonald, H. Veerman i F. Blasi. "FUNCTIONAL PROPERTIES OF DELETION-MUTANTS OF TISSUE-TYPE PLASMINOGEN ACTIVATOR". W XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643724.
Pełny tekst źródła"Bacteriophages as vectors of gene transfer from prokaryotes to eukaryotes". W Bioinformatics of Genome Regulation and Structure/Systems Biology (BGRS/SB-2022) :. Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, 2022. http://dx.doi.org/10.18699/sbb-2022-074.
Pełny tekst źródłaRaporty organizacyjne na temat "Eukaryotic gene regulation"
Chamovitz, Daniel, i Albrecht Von Arnim. Translational regulation and light signal transduction in plants: the link between eIF3 and the COP9 signalosome. United States Department of Agriculture, listopad 2006. http://dx.doi.org/10.32747/2006.7696515.bard.
Pełny tekst źródłaCoplin, David, Isaac Barash i Shulamit Manulis. Role of Proteins Secreted by the Hrp-Pathways of Erwinia stewartii and E. herbicola pv. gypsophilae in Eliciting Water-Soaking Symptoms and Initiating Galls. United States Department of Agriculture, czerwiec 2001. http://dx.doi.org/10.32747/2001.7580675.bard.
Pełny tekst źródłaSchuster, Gadi, i David Stern. Integration of phosphorus and chloroplast mRNA metabolism through regulated ribonucleases. United States Department of Agriculture, sierpień 2008. http://dx.doi.org/10.32747/2008.7695859.bard.
Pełny tekst źródłaOstersetzer-Biran, Oren, i Jeffrey Mower. Novel strategies to induce male sterility and restore fertility in Brassicaceae crops. United States Department of Agriculture, styczeń 2016. http://dx.doi.org/10.32747/2016.7604267.bard.
Pełny tekst źródłaSchuster, Gadi, i David Stern. Integrated Studies of Chloroplast Ribonucleases. United States Department of Agriculture, wrzesień 2011. http://dx.doi.org/10.32747/2011.7697125.bard.
Pełny tekst źródłaTzfira, Tzvi, Michael Elbaum i Sharon Wolf. DNA transfer by Agrobacterium: a cooperative interaction of ssDNA, virulence proteins, and plant host factors. United States Department of Agriculture, grudzień 2005. http://dx.doi.org/10.32747/2005.7695881.bard.
Pełny tekst źródła