Artykuły w czasopismach na temat „Ethylene epoxidation”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Ethylene epoxidation.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Ethylene epoxidation”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

de Roo, C. Maurits, Johann B. Kasper, Martin van Duin, Francesco Mecozzi i Wesley Browne. "Off-line analysis in the manganese catalysed epoxidation of ethylene-propylene-diene rubber (EPDM) with hydrogen peroxide". RSC Advances 11, nr 51 (2021): 32505–12. http://dx.doi.org/10.1039/d1ra06222k.

Pełny tekst źródła
Streszczenie:
Epoxidation of ethylene-propylene-diene rubber (EPDM), based on 5-ethylidene-2-norbornene, to epoxidized EPDM (eEPDM) opens routes to cross-linking and reactive blending, with increased polarity aiding adhesion to polar materials such as silica.
Style APA, Harvard, Vancouver, ISO itp.
2

Jenkins, Cody, Jiashen Tian i Ryan J. Milcarek. "Short Term Silver Electrode Microstructure Changes Under Epoxidation Conditions for Solid Oxide Electrolysis Cells". ECS Meeting Abstracts MA2023-01, nr 54 (28.08.2023): 185. http://dx.doi.org/10.1149/ma2023-0154185mtgabs.

Pełny tekst źródła
Streszczenie:
Ethylene epoxidation is an important reaction to form ethylene oxide (EO), which is a precursor to many other critical chemicals. This study links short-term EO production to the effects on the microstructure of Ag/yttria-stabilized zirconia cells with and without an electrochemically promoted catalyst (EPOC). Nano scale features called striations were observed using a Scanning Electron Microscope on the silver under all reaction conditions tested. While appearing in both cases, the striations for the EPOC case are finer in size (~200 nm) compared to the no current case (~400 nm). These features did not appear when epoxidation conditions were not present. Striation formation was further linked to the epoxidation reaction through electrochemical impedance spectroscopy (EIS) and gas chromatography. Ethylene conversion to EO declines over the course of hours as striations form, indicating that striations have a negative influence on the reaction. Striation formation further effected the electrochemical performance of the cells, resulting in the low frequency depressions on EIS to shrink in both cases after 10 hours of epoxidation.
Style APA, Harvard, Vancouver, ISO itp.
3

Jenkins, Cody, Jiashen Tian i Ryan J. Milcarek. "Short Term Silver Electrode Microstructure Changes Under Epoxidation Conditions for Solid Oxide Electrolysis Cells". ECS Transactions 111, nr 6 (19.05.2023): 1209–21. http://dx.doi.org/10.1149/11106.1209ecst.

Pełny tekst źródła
Streszczenie:
Ethylene epoxidation is an important reaction to form ethylene oxide (EO), which is a precursor to many other critical chemicals. This study links short-term EO production to the effects on the microstructure of Ag/yttria-stabilized zirconia cells with and without an electrochemically promoted catalyst (EPOC). Nano scale features called striations were observed using a Scanning Electron Microscope (SEM) on the silver under all reaction conditions tested. While appearing in both cases, the striations for the EPOC case are finer in size (~150 to 250 nm) compared to the no current case (~400 to 500 nm). These features did not appear when epoxidation conditions were not present. Striation formation was further linked to the epoxidation reaction through electrochemical impedance spectroscopy (EIS) and gas chromatography (GC). Ethylene conversion to EO declines over the course of hours as striations form, indicating that striations have a negative influence on the reaction. Striation formation further effected the electrochemical performance of the cells, resulting in the low frequency depressions observed in EIS to shrink in both cases after 10 hours of epoxidation.
Style APA, Harvard, Vancouver, ISO itp.
4

VANSANTEN, R. "The mechanism of ethylene epoxidation". Journal of Catalysis 98, nr 2 (kwiecień 1986): 530–39. http://dx.doi.org/10.1016/0021-9517(86)90341-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Maqbool, Muhammad, Toheed Akhter, Muhammad Faheem, Sohail Nadeem i Chan Ho Park. "Correction: CO2 free production of ethylene oxide via liquid phase epoxidation of ethylene using niobium oxide incorporated mesoporous silica material as the catalyst". RSC Advances 13, nr 8 (2023): 5172. http://dx.doi.org/10.1039/d3ra90009f.

Pełny tekst źródła
Streszczenie:
Correction for ‘CO2 free production of ethylene oxide via liquid phase epoxidation of ethylene using niobium oxide incorporated mesoporous silica material as the catalyst’ by Muhammad Maqbool et al., RSC Adv., 2023, 13, 1779–1786, https://doi.org/10.1039/D2RA07240H
Style APA, Harvard, Vancouver, ISO itp.
6

Liu, Xin, Yang Yang, Minmin Chu, Ting Duan, Changgong Meng i Yu Han. "Defect stabilized gold atoms on graphene as potential catalysts for ethylene epoxidation: a first-principles investigation". Catalysis Science & Technology 6, nr 6 (2016): 1632–41. http://dx.doi.org/10.1039/c5cy01619c.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Gilbert, B., T. Cavoue, M. Aouine, L. Burel, F. J. Cadete Santos Aires, A. Caravaca, M. Rieu i in. "Ag-based electrocatalysts for ethylene epoxidation". Electrochimica Acta 394 (październik 2021): 139018. http://dx.doi.org/10.1016/j.electacta.2021.139018.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Özbek, M. O., i R. A. van Santen. "The Mechanism of Ethylene Epoxidation Catalysis". Catalysis Letters 143, nr 2 (12.01.2013): 131–41. http://dx.doi.org/10.1007/s10562-012-0957-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Özbek, M. Olus, Isik Önal i Rutger A. van Santen. "Ethylene Epoxidation Catalyzed by Silver Oxide". ChemCatChem 3, nr 1 (7.10.2010): 150–53. http://dx.doi.org/10.1002/cctc.201000249.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Chen, Hsin-Tsung, i Chen-Wei Chan. "Promoting ethylene epoxidation on gold nanoclusters: self and CO induced O2 activation". Physical Chemistry Chemical Physics 17, nr 34 (2015): 22336–41. http://dx.doi.org/10.1039/c5cp02809d.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Greiner, M. T., T. E. Jones, B. E. Johnson, T. C. R. Rocha, Z. J. Wang, M. Armbrüster, M. Willinger, A. Knop-Gericke i R. Schlögl. "The oxidation of copper catalysts during ethylene epoxidation". Physical Chemistry Chemical Physics 17, nr 38 (2015): 25073–89. http://dx.doi.org/10.1039/c5cp03722k.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Xin, Jia-Ying, Ning Xu, Sheng-Fu Ji, Yan Wang i Chun-Gu Xia. "Epoxidation of Ethylene by Whole Cell Suspension of Methylosinus trichosporium IMV 3011". Journal of Chemistry 2017 (2017): 1–6. http://dx.doi.org/10.1155/2017/9191382.

Pełny tekst źródła
Streszczenie:
Methane monooxygenase (MMO) has been found in methanotrophic bacteria, which catalyzes the epoxidation of gaseous alkenes to their corresponding epoxides. The whole cell suspension of Methylosinus trichosporium IMV 3011 was used to produce epoxyethane from ethylene. The optimal reaction time and initial ethylene concentration for ethylene epoxidation have been described. The product epoxyethane is not further metabolized and accumulates extracellularly. Thus, exhaustion of reductant and the inhibition of toxic products make it difficult to accumulate epoxyethane continuously. In order to settle these problems, regeneration of cofactor NADH was performed in batch experiments with methane and methanol. The amount of epoxyethane formed before cosubstrate regeneration was between 0.8 and 1.0 nmol/50 mg cells in approximately 8 h. Combining data from 7 batch experiments, the total production of epoxyethane was 2.2 nmol. Production of epoxyethane was improved (4.6 nmol) in 10% gas phase methane since methane acts as an abundant reductant for epoxidation. It was found that the maximum production of epoxyethane (6.6 nmol) occurs with 3 mmol/L methanol. The passive effect of epoxyethane accumulation on epoxyethane production capacity of Methylosinus trichosporium IMV 3011 in batch experiments was studied. Removal of product was suggested to overcome the inhibition of epoxyethane production.
Style APA, Harvard, Vancouver, ISO itp.
13

Nakano, Taku, Teddy G. Traylor i David Dolphin. "The formation of N-alkylporphyrins during epoxidation of ethylene catalyzed by iron(III) meso-tetrakis(2,6-dichlorophenyl)porphyrin". Canadian Journal of Chemistry 68, nr 9 (1.09.1990): 1504–6. http://dx.doi.org/10.1139/v90-231.

Pełny tekst źródła
Streszczenie:
During the epoxidation of ethylene using iron meso-tetrakis(2,6-dichlorophenyl)porphyrin chloride and iodosopentafluorobenzene several N-alkylporphyrins were formed. The major product was 21-carboxymethyl-5,10,15,20-tetrakis(2,6-dichlorophenyl)porphyrin. This was derived, by oxidation, from the corresponding 21-formylmethyl complex which in turn was obtained from the initially formed N-hydroxyethylporphyrin, a compound not isolated due to its ready oxidation. Keywords: N-alkylporphyrins, suicide labelling, cytochrome P-450, hemin catalysis, epoxidation, oxidation.
Style APA, Harvard, Vancouver, ISO itp.
14

Antonyshyn, Iryna, Olga Sichevych, Alim Ormeci, Ulrich Burkhardt, Karsten Rasim, Sven Titlbach, Marc Armbrüster, Stephan A. Schunk i Yuri Grin. "Ca–Ag compounds in ethylene epoxidation reaction". Science and Technology of Advanced Materials 20, nr 1 (19.09.2019): 902–16. http://dx.doi.org/10.1080/14686996.2019.1655664.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

van Hoof, A. J. F., E. A. R. Hermans, A. P. van Bavel, H. Friedrich i E. J. M. Hensen. "Structure Sensitivity of Silver-Catalyzed Ethylene Epoxidation". ACS Catalysis 9, nr 11 (19.09.2019): 9829–39. http://dx.doi.org/10.1021/acscatal.9b02720.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Berndt, Torsten, i Olaf Böge. "Gas-Phase Epoxidation of Propylene and Ethylene". Industrial & Engineering Chemistry Research 44, nr 4 (luty 2005): 645–50. http://dx.doi.org/10.1021/ie049464m.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Ramírez, Adrián, José L. Hueso, Reyes Mallada i Jesús Santamaría. "Ethylene epoxidation in microwave heated structured reactors". Catalysis Today 273 (wrzesień 2016): 99–105. http://dx.doi.org/10.1016/j.cattod.2016.01.007.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Jun, Yang, Deng Jingfa, Yuan Xiaohong i Zhang Shi. "Rhenium as a promoter for ethylene epoxidation". Applied Catalysis A: General 92, nr 2 (grudzień 1992): 73–80. http://dx.doi.org/10.1016/0926-860x(92)80307-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

van Hoof, A. J. F., R. C. J. van der Poll, H. Friedrich i E. J. M. Hensen. "Dynamics of silver particles during ethylene epoxidation". Applied Catalysis B: Environmental 272 (wrzesień 2020): 118983. http://dx.doi.org/10.1016/j.apcatb.2020.118983.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Dawoodi, Z., i R. L. Kelly. "Epoxidation of ethylene catalysed by molybdenum complexes". Polyhedron 5, nr 1-2 (styczeń 1986): 271–75. http://dx.doi.org/10.1016/s0277-5387(00)84921-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Yan, Wenjuan, Anand Ramanathan, Madhav Ghanta i Bala Subramaniam. "Towards highly selective ethylene epoxidation catalysts using hydrogen peroxide and tungsten- or niobium-incorporated mesoporous silicate (KIT-6)". Catal. Sci. Technol. 4, nr 12 (2014): 4433–39. http://dx.doi.org/10.1039/c4cy00877d.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Carbonio, Emilia A., Tulio C. R. Rocha, Alexander Yu Klyushin, Igor Píš, Elena Magnano, Silvia Nappini, Simone Piccinin, Axel Knop-Gericke, Robert Schlögl i Travis E. Jones. "Are multiple oxygen species selective in ethylene epoxidation on silver?" Chemical Science 9, nr 4 (2018): 990–98. http://dx.doi.org/10.1039/c7sc04728b.

Pełny tekst źródła
Streszczenie:
We show atomic oxygen on an unreconstructed Ag(110) surface has a O 1s binding energy ≤ 528 eV and its stable at low coverages. Our findings point to the idea of multiple selective oxygen species in ethylene epoxidation on Ag.
Style APA, Harvard, Vancouver, ISO itp.
23

Impeng, Sarawoot, Thantip Roongcharoen, Phornphimon Maitarad, Hongmin Wu, Chirawat Chitpakdee, Vinich Promarak, Liyi Shi i Supawadee Namuangruk. "High selective catalyst for ethylene epoxidation to ethylene oxide: A DFT investigation". Applied Surface Science 513 (maj 2020): 145799. http://dx.doi.org/10.1016/j.apsusc.2020.145799.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Charchi Aghdam, Nazanin, Ning Chen i Jafar Soltan. "Ozonative epoxidation of ethylene: A novel process for production of ethylene oxide". Applied Catalysis A: General 661 (lipiec 2023): 119239. http://dx.doi.org/10.1016/j.apcata.2023.119239.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Linic, Suljo, i Mark A. Barteau. "Control of Ethylene Epoxidation Selectivity by Surface Oxametallacycles". Journal of the American Chemical Society 125, nr 14 (kwiecień 2003): 4034–35. http://dx.doi.org/10.1021/ja029076g.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Ozbek, M. O., I. Onal i R. A. Van Santen. "Ethylene epoxidation catalyzed by chlorine-promoted silver oxide". Journal of Physics: Condensed Matter 23, nr 40 (19.09.2011): 404202. http://dx.doi.org/10.1088/0953-8984/23/40/404202.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

KUNG, HAROLD H. "A KINETIC MODEL OF THE EPOXIDATION OF ETHYLENE". Chemical Engineering Communications 118, nr 1 (listopad 1992): 17–24. http://dx.doi.org/10.1080/00986449208936083.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Filimonova, N. B., A. V. Vorob’ev, K. V. Bozhenko, N. I. Moiseeva, S. P. Dolin, A. E. Gekhman i I. I. Moiseev. "Special features of ethylene epoxidation by peroxyacetic acid". Russian Journal of Physical Chemistry B 4, nr 3 (czerwiec 2010): 408–12. http://dx.doi.org/10.1134/s1990793110030073.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Jones, Travis E., Regina Wyrwich, Sebastian Böcklein, Emilia A. Carbonio, Mark T. Greiner, Alexander Yu Klyushin, Wolfgang Moritz i in. "The Selective Species in Ethylene Epoxidation on Silver". ACS Catalysis 8, nr 5 (21.03.2018): 3844–52. http://dx.doi.org/10.1021/acscatal.8b00660.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Antonyshyn, Iryna, Olga Sichevych, Karsten Rasim, Alim Ormeci, Ulrich Burkhardt, Sven Titlbach, Stephan A. Schunk, Marc Armbrüster i Yuri Grin. "Anisotropic Reactivity of CaAg under Ethylene Epoxidation Conditions". Inorganic Chemistry 57, nr 17 (16.08.2018): 10821–31. http://dx.doi.org/10.1021/acs.inorgchem.8b01449.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

AYAME, A. "Epoxidation of ethylene over Ag$z.sbnd;NaCl catalysts". Journal of Catalysis 100, nr 2 (sierpień 1986): 401–13. http://dx.doi.org/10.1016/0021-9517(86)90107-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

van Hoof, Arno J. F., Ivo A. W. Filot, Heiner Friedrich i Emiel J. M. Hensen. "Reversible Restructuring of Silver Particles during Ethylene Epoxidation". ACS Catalysis 8, nr 12 (8.11.2018): 11794–800. http://dx.doi.org/10.1021/acscatal.8b03331.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Yinsheng, Peng, Zhang Shi, Tang Liang i Deng Jingfa. "Study of the promoting effects in ethylene epoxidation". Catalysis Letters 12, nr 1-3 (1992): 307–18. http://dx.doi.org/10.1007/bf00767213.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Antonyshyn, Iryna, Olga Sichevych, Karsten Rasim, Alim Ormeci, Ulrich Burkhardt, Sven Titlbach, Stephan Andreas Schunk, Marc Armbrüster i Yuri Grin. "Chemical Behaviour of CaAg2 under Ethylene Epoxidation Conditions". European Journal of Inorganic Chemistry 2018, nr 35 (26.08.2018): 3933–41. http://dx.doi.org/10.1002/ejic.201800710.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Li, Xian Feng, Jin Bing Li, Jian She Chen, Zhi Xiang Zhang, Wu Jun Dai, Bao Lin Cui i Qiang Lin. "Development and Application of YS Silver Catalysts for Ethylene Epoxidation". Advanced Materials Research 418-420 (grudzień 2011): 1760–67. http://dx.doi.org/10.4028/www.scientific.net/amr.418-420.1760.

Pełny tekst źródła
Streszczenie:
Ethylene oxide (EO) is an important organic chemical material, and Silver catalyst is an important petrochemical catalyst and is regarded as the core of EO/EG production process. The catalyst's performance is the major factor that directly determines the economic efficiency of commercial production of ethylene oxide. In this paper, we will introduce the development and application of YS silver catalysts developed by Beijing Research Institute of Chemical Industry, SINOPEC.
Style APA, Harvard, Vancouver, ISO itp.
36

Suttikul, Thitiporn, Chakrit Tongurai, Hidetoshi Sekiguchi i Sumaeth Chavadej. "Ethylene Epoxidation in Cylindrical Dielectric Barrier Discharge: Effects of Separate Ethylene/Oxygen Feed". Plasma Chemistry and Plasma Processing 32, nr 6 (5.07.2012): 1169–88. http://dx.doi.org/10.1007/s11090-012-9398-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Ren, Qizhi, Zongsheng Hou, Hong Zhang, Aiqin Wang i Shuangyan Liu. "Catalytic enantioselective epoxidation of olefins by chiral mono-faced strapped porphyrin with nitrogen blocking ligand". Journal of Porphyrins and Phthalocyanines 13, nr 12 (grudzień 2009): 1214–20. http://dx.doi.org/10.1142/s1088424609001583.

Pełny tekst źródła
Streszczenie:
The chiral mono-faced binaphthyl strapped porphyrins were synthesized and 1H NMR characterized. Asymmetric epoxidation of olefins such as styrene derivatives and trimethylsilyl ethylene with iodosobenzene as oxidant was achieved by using the iron complex as catalyst in the presence of a nitrogen ligand. Enantiomeric excess (ee) of 80% and yield of 88% were measured for the epoxidation of styrene in the presence of 4-phenyl pyridine. The coordination capability of nitrogen ligands to catalysts measured by UV-vis spectrophotometric titrations evidence that the unstrapped face of the mono-faced catalyst is blocked by the nitrogen ligand coordination to the iron ion of the catalyst.
Style APA, Harvard, Vancouver, ISO itp.
38

Greiner, Mark T., Travis E. Jones, Alexander Klyushin, Axel Knop-Gericke i Robert Schlögl. "Ethylene Epoxidation at the Phase Transition of Copper Oxides". Journal of the American Chemical Society 139, nr 34 (15.08.2017): 11825–32. http://dx.doi.org/10.1021/jacs.7b05004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Peña, Miguel A., David M. Carr, King Lun Yeung i Arvind Varma. "Ethylene epoxidation in a catalytic packed-bed membrane reactor". Chemical Engineering Science 53, nr 22 (listopad 1998): 3821–34. http://dx.doi.org/10.1016/s0009-2509(98)00189-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Zhou, Xing-Gui, i Wei-Kang Yuan. "Optimization of the fixed-bed reactor for ethylene epoxidation". Chemical Engineering and Processing: Process Intensification 44, nr 10 (październik 2005): 1098–107. http://dx.doi.org/10.1016/j.cep.2005.03.008.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Won Park, Dae, i Georges Gau. "Simulation of ethylene epoxidation in a multitubular transport reactor". Chemical Engineering Science 41, nr 1 (1986): 143–50. http://dx.doi.org/10.1016/0009-2509(86)85207-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Ozbek, M. O., I. Onal i R. A. van Santen. "Effect of Surface and Oxygen Coverage on Ethylene Epoxidation". Topics in Catalysis 55, nr 11-13 (26.07.2012): 710–17. http://dx.doi.org/10.1007/s11244-012-9870-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

BOSKOVIC, G. "Deactivation kinetics of Ag/Al2O3 catalyst for ethylene epoxidation". Journal of Catalysis 226, nr 2 (wrzesień 2004): 334–42. http://dx.doi.org/10.1016/j.jcat.2004.06.003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Ozbek, M. O., I. Onal i R. A. van Santen. "Why silver is the unique catalyst for ethylene epoxidation". Journal of Catalysis 284, nr 2 (grudzień 2011): 230–35. http://dx.doi.org/10.1016/j.jcat.2011.08.004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Marek, E. J., S. Gabra, J. S. Dennis i S. A. Scott. "High selectivity epoxidation of ethylene in chemical looping setup". Applied Catalysis B: Environmental 262 (marzec 2020): 118216. http://dx.doi.org/10.1016/j.apcatb.2019.118216.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Russo, V., T. Kilpiö, J. Hernandez Carucci, M. Di Serio i T. O. Salmi. "Modeling of microreactors for ethylene epoxidation and total oxidation". Chemical Engineering Science 134 (wrzesień 2015): 563–71. http://dx.doi.org/10.1016/j.ces.2015.05.019.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

YANG, J., J. DENG, X. YUAN i S. ZHANG. "ChemInform Abstract: Rhenium as a Promoter for Ethylene Epoxidation." ChemInform 24, nr 11 (20.08.2010): no. http://dx.doi.org/10.1002/chin.199311086.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Özbek, M. Oluş, Işik Önal i Rutger A. van Santen. "Chlorine and Caesium Promotion of Silver Ethylene Epoxidation Catalysts". ChemCatChem 5, nr 2 (21.01.2013): 443–51. http://dx.doi.org/10.1002/cctc.201200690.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Lu, Xinqing, Wen-Juan Zhou, Yejun Guan, Armin Liebens i Peng Wu. "Enhancing ethylene epoxidation of a MWW-type titanosilicate/H2O2 catalytic system by fluorine implanting". Catalysis Science & Technology 7, nr 12 (2017): 2624–31. http://dx.doi.org/10.1039/c7cy00428a.

Pełny tekst źródła
Streszczenie:
SiO3/2F units in the framework of Ti-MWW generate stronger hydrogen-bonding between Hend in Ti–Oα–Oβ–Hend intermediates and the adjacent Si–F species, which effectively improves the catalytic performance of Ti-MWW for the liquid-phase epoxidation of ethylene.
Style APA, Harvard, Vancouver, ISO itp.
50

Suttikul, Thitiporn, Sirirath Yaowapong-aree, Hidetoshi Sekiguchi, Sumaeth Chavadej i Jittipan Chavadej. "Improvement of ethylene epoxidation in low-temperature corona discharge by separate ethylene/oxygen feed". Chemical Engineering and Processing: Process Intensification 70 (sierpień 2013): 222–32. http://dx.doi.org/10.1016/j.cep.2013.03.018.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii