Gotowa bibliografia na temat „Escherichia coli genome”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Escherichia coli genome”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Escherichia coli genome"
Méric, Guillaume, Matthew D. Hitchings, Ben Pascoe i Samuel K. Sheppard. "From Escherich to the Escherichia coli genome". Lancet Infectious Diseases 16, nr 6 (czerwiec 2016): 634–36. http://dx.doi.org/10.1016/s1473-3099(16)30066-4.
Pełny tekst źródłaMori, Hideo, Hiroshi Mizoguchi i Tatsuro Fujio. "Escherichia coli minimum genome factory". Biotechnology and Applied Biochemistry 46, nr 3 (1.03.2007): 157. http://dx.doi.org/10.1042/ba20060107.
Pełny tekst źródłaCui, Tailin, Naoki Moro‐oka, Katsufumi Ohsumi, Kenichi Kodama, Taku Ohshima, Naotake Ogasawara, Hirotada Mori, Barry Wanner, Hironori Niki i Takashi Horiuchi. "Escherichia coli with a linear genome". EMBO reports 8, nr 2 (12.01.2007): 181–87. http://dx.doi.org/10.1038/sj.embor.7400880.
Pełny tekst źródłaKolisnychenko, V. "Engineering a Reduced Escherichia coli Genome". Genome Research 12, nr 4 (1.04.2002): 640–47. http://dx.doi.org/10.1101/gr.217202.
Pełny tekst źródłaKOOB, MICHAEL D., ANITA J. SHAW i DOUGLAS C. CAMERON. "Minimizing the Genome of Escherichia coli". Annals of the New York Academy of Sciences 745, nr 1 (17.12.2006): 1–3. http://dx.doi.org/10.1111/j.1749-6632.1994.tb44359.x.
Pełny tekst źródłaCochrane, Ryan R., Stephanie L. Brumwell, Arina Shrestha, Daniel J. Giguere, Samir Hamadache, Gregory B. Gloor, David R. Edgell i Bogumil J. Karas. "Cloning of Thalassiosira pseudonana’s Mitochondrial Genome in Saccharomyces cerevisiae and Escherichia coli". Biology 9, nr 11 (26.10.2020): 358. http://dx.doi.org/10.3390/biology9110358.
Pełny tekst źródłaHayashi, Tetsuya. "Genome plasticity of Escherichia coli; insights from genome analysis". Environmental Mutagen Research 27, nr 2 (2005): 117–18. http://dx.doi.org/10.3123/jems.27.117.
Pełny tekst źródłaKang, Yisheng, Tim Durfee, Jeremy D. Glasner, Yu Qiu, David Frisch, Kelly M. Winterberg i Frederick R. Blattner. "Systematic Mutagenesis of the Escherichia coli Genome". Journal of Bacteriology 186, nr 15 (1.08.2004): 4921–30. http://dx.doi.org/10.1128/jb.186.15.4921-4930.2004.
Pełny tekst źródłaKang, Yisheng, Tim Durfee, Jeremy D. Glasner, Yu Qiu, David Frisch, Kelly M. Winterberg i Frederick R. Blattner. "Systematic Mutagenesis of the Escherichia coli Genome". Journal of Bacteriology 186, nr 24 (15.12.2004): 8548. http://dx.doi.org/10.1128/jb.186.24.8548.2004.
Pełny tekst źródłaPallen, Mark. "Escherichia Coli: From Genome Sequences to Consequence". Canadian Journal of Infectious Diseases and Medical Microbiology 17, nr 2 (2006): 114–16. http://dx.doi.org/10.1155/2006/345319.
Pełny tekst źródłaRozprawy doktorskie na temat "Escherichia coli genome"
Neelakanta, Girish. "Genome variations in commensal and pathogenic E.coli". [S.l. : s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=974330329.
Pełny tekst źródłaSchlegel, Susan. "From protein production to genome evolution in Escherichia coli". Doctoral thesis, Stockholms universitet, Institutionen för biokemi och biofysik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-94993.
Pełny tekst źródłaAt the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 3: Manuscript.
Romero, Alvarez David. "Genome wide analyses of the Escherichia coli primary and secondary transcriptomes". Thesis, University of Leeds, 2014. http://etheses.whiterose.ac.uk/6917/.
Pełny tekst źródłaCoss, Dennis. "Insertion of genes and operons into the Escherichia coli genome through targeted recombination". Morgantown, W. Va. : [West Virginia University Libraries], 2005. https://eidr.wvu.edu/etd/documentdata.eTD?documentid=3804.
Pełny tekst źródłaTitle from document title page. Document formatted into pages; contains v, 125 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 71-87).
Mosberg, Joshua Adam Weintrob. "Studying and Improving Lambda Red Recombination for Genome Engineering in Escherichia coli". Thesis, Harvard University, 2013. http://dissertations.umi.com/gsas.harvard:10777.
Pełny tekst źródłaSchmidt, Dorothea. "Molekulare Analyse des probiotischen Stamms Escherichia coli Nissle 1917". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1243973355362-88295.
Pełny tekst źródłaThe probiotic E. coli Nissle 1917 is a fecal isolate which is traditionally used for treatment of various gastrointestinal disorders. In clinical trials where EcN was used as therapeutic alternative for remission maintenance of ulcerative colitis compared to standard medication, promising results led to an increased interest in probiotics. Today, EcN is one of the best studied probiotics. Therefore, several mechanisms of action could be enlightened. Structural components and strain-specific products are responsible for its probiotic effects. But conclusive concepts about genes, gene products and molecular mechanisms that really contribute to the probiotic character of EcN have not been offered so far. In order to create new possibilities to elucidate the probiotic traits of EcN the genome is analysed by taking this as a basis for comparison to other E. coli genomes and identification of intestinal in vivo regulated genes using a promoter-trap-library. The sequenced EcN genome is annotated and compared to 13 other so far annotated E. coli genomes. Concerning these analyses EcN encodes 121 strain-specific genes. The genome structure including the genomic islands and prophages is highly homolog to the uropathogenic E. coli CFT073. EcN encodes most of the virulence and fitness factors that are present in E. coli CFT073. Therefore, the close relationship of these two strains is confirmed at nucleotide level. Furthermore, it is shown that in artificial systems like cell culture assays and gnotobiotic mice EcN reveals a pathogenic potential although EcN is able to decrease colonization efficiency of pathogenic bacteria. The alternative sigma factor RpoS that is responsible for global regulation and activity of several genes seems to play an important role during colonization of EcN in the intestine and its immunostimulatory effects on intestinal epithelial cells. Investigation of EcN-deletion mutants lacking genomic islands and prophages lead to the conclusion that some genomic islands may play a role for specific probiotic traits. This is the first time where a promoter-trap-library was used in conventional and gnotobiotic mice for collection of intestinal in vivo active promoters. Constructing and establishing a promoter-reporter gene assay with the bioluminescent luxCDABE operon made the investigation of selected promoters in vitro possible as well as establishing a bioluminescence assay using an In Vivo Imaging System (IVIS) for investigation of promoter activity in living mice. In this research project was shown that EcN is not a completely harmless probiotic. The genome structure and regulatory mechanisms of gene expression are the strain’s molecular traits that lead to probiotic activity and immunostimulatory effects. Therefore, the molecular analyses presented here, together with the complete genome sequence, are a basis for further investigations of mechanisms that are responsible for the probiotic effects of EcN
Coulange, Frédérique. "Isolement et caracterisation de regions specifiques du genome des escherichia coli pathogenes aviaires (doctorat : microbiologie)". Paris 11, 1999. http://www.theses.fr/1999PA114802.
Pełny tekst źródłaPRADEL, NATHALIE. "Escherichia coli producteurs de shiga-toxines : etude epidemiologique, recherche des caracteristiques des souches pathogenes par comparaison moleculaire et hybridation soustractive (doctorat : microbiologie)". Clermont-Ferrand 1, 2001. http://www.theses.fr/2001CLF1PP02.
Pełny tekst źródłaBrambilla, Elisa. "Investigation of E. coli genome complexity by means of fluorescent reporters of gene expression". Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066607/document.
Pełny tekst źródłaEscherichia coli is able to survive in many different environments. The information necessary for this adaptation is encoded in the chromosome. This circular molecule is condensed in a compact DNA-protein structure, called the nucleoid. The chromosome is not uniform, and shows uneven distributions of nucleoid-associated proteins (NAPs) binding sites, AT-rich sequences and general protein occupancy domains. It has been demonstrated that the position of important genes is highly conserved in ?-Proteobacteria. These differences along the chromosome and the conserved position of important genes suggest that the position of the gene can influence gene expression. To test this hypothesis, I studied the expression of a fluorescent reporter gene inserted in different positions around the chromosome. The expression of the reporter is driven by differently regulated promoters, one repressed by the important NAP H-NS, one non regulated and one subject to supercoiling and stringent control. We studied the dynamical expression of these promoters in different growth conditions, growth phases, upon nutritional upshift and under stress. We showed that the expression of the H-NS dependent promoter depends on the location on the chromosome, because H-NS repression is enhanced in presence of AT-rich sequences. We also studied the influence of a divergent gene on the reporter expression as a function of chromosomal position, and showed that this influence depends on the location of the gene. With our study we have been therefore able to show the impact of chromosomal position on gene expression and to give a new perspective on genome complexity
Nguyen, Huong LE. "Etude des facteurs régulateurs de la traduction chez Escherichia coli". Thesis, Toulouse, INSA, 2019. http://www.theses.fr/2019ISAT0004.
Pełny tekst źródłaThe analysis of gene expression regulation is necessary to better understand bacterial adaptation to environment and to be able in a context of synthetic biology to optimize the production of molecules of interest. The goal of this thesis was to study translation at the genome-wide level and its relationship to other cellular processes using a systems biology approach. First, translation activity at the -omic scale (called the traductome) was measured : for each messenger RNAs, its percentage of copies in translation and ribosome density. For the first time, a complete picture of the translational state in fast growing E. coli cells was obtained, characterized by a majority of transcripts with a very high percentage of copies in translation but a low ribosome density. Our model identified sequence-related factors as determinants of translation but, more surprisingly, the model predicted the important role of a physiological parameter: the mRNA concentration. Thus, more concentrated mRNA would have higher percentage of copies in translation and higher ribosome density. For the first time, this effect of transcription on translation has been validated at the molecular level on several genes. We showed that an increase in mRNA concentration by transcriptional induction results in increases in percentage of copies in translation and in ribosome load
Książki na temat "Escherichia coli genome"
Vaillancourt, Peter E. E. coli gene expression protocols. Totowa, N.J: Humana, 2011.
Znajdź pełny tekst źródłaMagnusson, Lisa. Global regulation of gene expression in Escherichia coli: The role of ppGpp, DksA, and the levels of RNA polymerase. Göteborg: Göteborgs universitet, 2007.
Znajdź pełny tekst źródłaMagnusson, Lisa. Global regulation of gene expression in Escherichia coli: The role of ppGpp, DksA, and the levels of RNA polymerase. Göteborg: Göteborgs universitet, 2007.
Znajdź pełny tekst źródłaHeterologous gene expression in E. coli: Methods and protocols. New York, NY: Humana Press, 2011.
Znajdź pełny tekst źródłaK, Patient R., red. Genetic engineering. Oxford: IRL Press, 1988.
Znajdź pełny tekst źródłaA, Ceccarelli, i Wallace A. 1963-, red. Genetic engineering. Wyd. 2. Oxford: Bios, 2001.
Znajdź pełny tekst źródłaG, Williams J. Genetic engineering. Oxford: BIOS Scientific Publishers, 1993.
Znajdź pełny tekst źródłaZdziarski, Jaroslaw. The genesis of asymptomatic bacteriuria Escherichia coli strains: Evolution, bacterial genome plasticity and host-pathogen adaptations of asymptomatic bacteriuria Escherichia coli strains. VDM Verlag Dr. Müller, 2011.
Znajdź pełny tekst źródłaLin, E. C. C., i A. Simon Lynch. Regulation of Gene Expression in Escherichia Coli. Springer London, Limited, 2012.
Znajdź pełny tekst źródłaC, Lin E. C., i Lynch A. Simon 1964-, red. Regulation of gene expression in Escherichia coli. New York: Chapman & Hall, 1996.
Znajdź pełny tekst źródłaCzęści książek na temat "Escherichia coli genome"
Milkman, Roger. "Gene Transfer in Escherichia coli". W Organization of the Prokaryotic Genome, 291–309. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555818180.ch16.
Pełny tekst źródłaJensen, Sheila Ingemann, i Alex Toftgaard Nielsen. "Multiplex Genome Editing in Escherichia coli". W Methods in Molecular Biology, 119–29. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7295-1_8.
Pełny tekst źródłaWeinstock, George M. "Resources for the Escherichia coli Genome Project". W Bacterial Genomes, 489–97. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-6369-3_38.
Pełny tekst źródłaFehér, Tamás, Ildikó Karcagi, Zsuzsa Győrfy, Kinga Umenhoffer, Bálint Csörgő i György Pósfai. "Scarless Engineering of the Escherichia coli Genome". W Microbial Gene Essentiality: Protocols and Bioinformatics, 251–59. Totowa, NJ: Humana Press, 2008. http://dx.doi.org/10.1007/978-1-59745-321-9_16.
Pełny tekst źródłaMellmann, Alexander, Martina Bielaszewska i Helge Karch. "Genotypic Changes in Enterohemorrhagic Escherichia coli During Human Infection". W Genome Plasticity and Infectious Diseases, 16–26. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555817213.ch2.
Pełny tekst źródłaApplebee, M. Kenyon, i Bernhard Ø. Palsson. "Genome-Scale Models and the Genetic Basis for E. coli Adaptation". W Systems Biology and Biotechnology of Escherichia coli, 237–56. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9394-4_12.
Pełny tekst źródłaSung, Bong Hyun, Jun Hyoung Lee i Sun Chang Kim. "Escherichia coli Genome Engineering and Minimization forthe Construction of a Bioengine". W Systems Biology and Biotechnology of Escherichia coli, 19–40. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9394-4_2.
Pełny tekst źródłaFeist, Adam M., Ines Thiele i Bernhard Ø. Palsson. "Genome-Scale Reconstruction, Modeling, and Simulation of E. coli℉s Metabolic Network". W Systems Biology and Biotechnology of Escherichia coli, 149–76. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9394-4_9.
Pełny tekst źródłaLabedan, Bernard, i Monica Riley. "Genetic Inventory: Escherichia coli as a Window on Ancestral Proteins". W Organization of the Prokaryotic Genome, 311–29. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555818180.ch17.
Pełny tekst źródłaNouwens, Amanda S., Femia G. Hopwood, Mathew Traini, Keith L. Williams i Bradley J. Walsh. "Proteome Approach to the Identification of Cellular Escherichia coli Proteins". W Organization of the Prokaryotic Genome, 331–46. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555818180.ch18.
Pełny tekst źródłaStreszczenia konferencji na temat "Escherichia coli genome"
Huang, Yi. "Codon Effect on the Entire Genome Based upon Genome-Wide Recoded Escherichia coli". W 2021 IEEE 9th International Conference on Bioinformatics and Computational Biology (ICBCB). IEEE, 2021. http://dx.doi.org/10.1109/icbcb52223.2021.9459235.
Pełny tekst źródłaKurmi, Annushree, Debashis Das, Piyali Sen, Suvendra Kumar Ray i Siddhartha Sankar Satapathy. "Gene Essentiality Mediated Base Substitution in Escherichia coli genome: Machine Learning Analysis". W 2022 International Interdisciplinary Conference on Mathematics, Engineering and Science (MESIICON). IEEE, 2022. http://dx.doi.org/10.1109/mesiicon55227.2022.10093501.
Pełny tekst źródłaMeizhen Ji, Jun Lu, Ying Zhang, Changjiang Ding, Dandan Qin i Haiyan Bai. "Operon prediction based on quadratic discriminant analysis in Escherichia coli genome". W 2010 2nd International Conference on Information Science and Engineering (ICISE). IEEE, 2010. http://dx.doi.org/10.1109/icise.2010.5689023.
Pełny tekst źródłaJia, Mengwen, i Yong Zhan. "Relationship of ORF length and mRNA degradation in Escherichia coli genome". W NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics. AIP, 2012. http://dx.doi.org/10.1063/1.4756461.
Pełny tekst źródłaVilkhovoy, M., N. Horvath i J. D. Varner. "Toward genome scale modeling of Escherichia coli cell-free protein synthesis". W IET/SynbiCITE Engineering Biology Conference. Institution of Engineering and Technology, 2016. http://dx.doi.org/10.1049/cp.2016.1253.
Pełny tekst źródła"Impact of terahertz irradiation on the antimicrobial resistance of Escherichia coli JM 103". W Bioinformatics of Genome Regulation and Structure/Systems Biology (BGRS/SB-2022) :. Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, 2022. http://dx.doi.org/10.18699/sbb-2022-316.
Pełny tekst źródłaTeramoto, Jun, Kayoko Yamada, Naoki Kobayashi, Ayako Kori, Shige H. Yoshimura, Kunio Takeyasu i Akira Ishihama. "Anaerobiosis-induced novel nucleoid protein of Escherichia coli: Architectural role in genome DNA compaction". W 2009 International Symposium on Micro-NanoMechatronics and Human Science (MHS). IEEE, 2009. http://dx.doi.org/10.1109/mhs.2009.5351819.
Pełny tekst źródła"On the question of activity of oxidative branch of pentose phosphate shunt in pgl mutant of Escherichia coli". W Bioinformatics of Genome Regulation and Structure/Systems Biology (BGRS/SB-2022) :. Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, 2022. http://dx.doi.org/10.18699/sbb-2022-311.
Pełny tekst źródła"The minimal medium irradiated with terahertz radiation induces proteins of homeostasis of transition metal ions and represses proteins of amino acid metabolism when Escherichia coli cells are cultivated on it". W Bioinformatics of Genome Regulation and Structure/Systems Biology (BGRS/SB-2022) :. Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, 2022. http://dx.doi.org/10.18699/sbb-2022-313.
Pełny tekst źródłaSahlan, Muhamad, Ihsan Wiratama, Heri Hermansyah, Anondho Wijarnako, Mohamad Teguh Gumelar i Masafumi Yohda. "Apoptin gene optimization in Escherichia coli". W SECOND INTERNATIONAL CONFERENCE OF MATHEMATICS (SICME2019). Author(s), 2019. http://dx.doi.org/10.1063/1.5096733.
Pełny tekst źródłaRaporty organizacyjne na temat "Escherichia coli genome"
Shpigel, Nahum Y., Ynte Schukken i Ilan Rosenshine. Identification of genes involved in virulence of Escherichia coli mastitis by signature tagged mutagenesis. United States Department of Agriculture, styczeń 2014. http://dx.doi.org/10.32747/2014.7699853.bard.
Pełny tekst źródłaWillis, C., F. Jorgensen, S. A. Cawthraw, H. Aird, S. Lai, M. Chattaway, I. Lock, E. Quill i G. Raykova. A survey of Salmonella, Escherichia coli (E. coli) and antimicrobial resistance in frozen, part-cooked, breaded or battered poultry products on retail sale in the United Kingdom. Food Standards Agency, maj 2022. http://dx.doi.org/10.46756/sci.fsa.xvu389.
Pełny tekst źródłaBalfanz, Emma, Erin Sandford, Michael G. Kaiser i Susan J. Lamont. Differential Immunological Gene Expression after Escherichia coli Infection in Chickens. Ames (Iowa): Iowa State University, styczeń 2011. http://dx.doi.org/10.31274/ans_air-180814-668.
Pełny tekst źródłaMonson, Melissa S., Michael G. Kaiser i Susan J. Lamont. Gene Expression Responses to Infection with Avian Pathogenic Escherichia coli in Chicken Spleen. Ames (Iowa): Iowa State University, styczeń 2018. http://dx.doi.org/10.31274/ans_air-180814-329.
Pełny tekst źródłaSandford, Erin, Megan Orr, Xianyao Li, Huaijun Zhou, timothy J. Johnson, Subhashinie Kariyawasam, Lisa K. Nolan, Peng Liu i Susan J. Lamont. Gene Expression Differences in White Blood Cells after Escherichia coli Infection in Chickens. Ames (Iowa): Iowa State University, styczeń 2012. http://dx.doi.org/10.31274/ans_air-180814-665.
Pełny tekst źródłaGutnick, David, i David L. Coplin. Role of Exopolysaccharides in the Survival and Pathogenesis of the Fire Blight Bacterium, Erwinia amylovora. United States Department of Agriculture, wrzesień 1994. http://dx.doi.org/10.32747/1994.7568788.bard.
Pełny tekst źródłaWackett, Lawrence, Raphi Mandelbaum i Michael Sadowsky. Bacterial Mineralization of Atrazine as a Model for Herbicide Biodegradation: Molecular and Applied Aspects. United States Department of Agriculture, styczeń 1999. http://dx.doi.org/10.32747/1999.7695835.bard.
Pełny tekst źródłaCahaner, Avigdor, Susan J. Lamont, E. Dan Heller i Jossi Hillel. Molecular Genetic Dissection of Complex Immunocompetence Traits in Broilers. United States Department of Agriculture, sierpień 2003. http://dx.doi.org/10.32747/2003.7586461.bard.
Pełny tekst źródła